Simple Theoretical Results on Reversible Fouling in Cross-Flow Membrane Filtration

In cross-flow membrane filtration, fouling results from material deposit which clogs the membrane inner surface. This hinders filtration, which experiences the so-called limiting flux. Among the models proposed by the literature, we retain a simple one: a steady-state reversible fouling is modelled...

Full description

Bibliographic Details
Main Authors: Pierre Haldenwang, Braulio Bernales, Pierrette Guichardon, Nelson Ibaseta
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/9/4/48
_version_ 1797709371393703936
author Pierre Haldenwang
Braulio Bernales
Pierrette Guichardon
Nelson Ibaseta
author_facet Pierre Haldenwang
Braulio Bernales
Pierrette Guichardon
Nelson Ibaseta
author_sort Pierre Haldenwang
collection DOAJ
description In cross-flow membrane filtration, fouling results from material deposit which clogs the membrane inner surface. This hinders filtration, which experiences the so-called limiting flux. Among the models proposed by the literature, we retain a simple one: a steady-state reversible fouling is modelled with the use of a single additional parameter, i.e., <inline-formula> <math display="inline"> <semantics> <msub> <mi>N</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula>, the ratio of the critical concentration for deposition to the feed concentration at inlet. To focus on fouling, viscous pressure drop and osmotic (counter-)pressure have been chosen low. It results in a minimal model of fouling. Solved thoroughly with the numerical means appropriate to enforce the nonlinear coupling between permeation and concentration polarization, the model delivers novel information. It first shows that permeation is utterly governed by solute transfer, the relevant non-dimensional quantities being hence limited to <inline-formula> <math display="inline"> <semantics> <msub> <mi>N</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, the transverse P&#233;clet number. Furthermore, when the role played by <inline-formula> <math display="inline"> <semantics> <msub> <mi>N</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula> and moderate <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> (say <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&lt;</mo> <mn>40</mn> </mrow> </semantics> </math> </inline-formula>) is investigated, all results can be interpreted with the use of a single non-dimensional parameter, <inline-formula> <math display="inline"> <semantics> <msub> <mi>F</mi> <mi>l</mi> </msub> </semantics> </math> </inline-formula>, the so-called fouling number, which simply reads <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>F</mi> <mi>l</mi> </msub> <mo>&#8801;</mo> <mi>P</mi> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msubsup> <mi>N</mi> <mi>d</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </semantics> </math> </inline-formula>. Now rendered possible, the overall fit of the numerical data allows us to put forward analytical final expressions, which involve all the physical parameters and allow us to retrieve the experimental trends.
first_indexed 2024-03-12T06:35:29Z
format Article
id doaj.art-d5a34ffc4a984ce0b803472509151cf1
institution Directory Open Access Journal
issn 2077-0375
language English
last_indexed 2024-03-12T06:35:29Z
publishDate 2019-04-01
publisher MDPI AG
record_format Article
series Membranes
spelling doaj.art-d5a34ffc4a984ce0b803472509151cf12023-09-03T01:21:27ZengMDPI AGMembranes2077-03752019-04-01944810.3390/membranes9040048membranes9040048Simple Theoretical Results on Reversible Fouling in Cross-Flow Membrane FiltrationPierre Haldenwang0Braulio Bernales1Pierrette Guichardon2Nelson Ibaseta3Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, 38 rue Joliot-Curie, 13451 Marseilles, FranceAix Marseille Univ, CNRS, Centrale Marseille, M2P2, 38 rue Joliot-Curie, 13451 Marseilles, FranceAix Marseille Univ, CNRS, Centrale Marseille, M2P2, 38 rue Joliot-Curie, 13451 Marseilles, FranceAix Marseille Univ, CNRS, Centrale Marseille, M2P2, 38 rue Joliot-Curie, 13451 Marseilles, FranceIn cross-flow membrane filtration, fouling results from material deposit which clogs the membrane inner surface. This hinders filtration, which experiences the so-called limiting flux. Among the models proposed by the literature, we retain a simple one: a steady-state reversible fouling is modelled with the use of a single additional parameter, i.e., <inline-formula> <math display="inline"> <semantics> <msub> <mi>N</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula>, the ratio of the critical concentration for deposition to the feed concentration at inlet. To focus on fouling, viscous pressure drop and osmotic (counter-)pressure have been chosen low. It results in a minimal model of fouling. Solved thoroughly with the numerical means appropriate to enforce the nonlinear coupling between permeation and concentration polarization, the model delivers novel information. It first shows that permeation is utterly governed by solute transfer, the relevant non-dimensional quantities being hence limited to <inline-formula> <math display="inline"> <semantics> <msub> <mi>N</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula>, the transverse P&#233;clet number. Furthermore, when the role played by <inline-formula> <math display="inline"> <semantics> <msub> <mi>N</mi> <mi>d</mi> </msub> </semantics> </math> </inline-formula> and moderate <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics> </math> </inline-formula> (say <inline-formula> <math display="inline"> <semantics> <mrow> <mi>P</mi> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&lt;</mo> <mn>40</mn> </mrow> </semantics> </math> </inline-formula>) is investigated, all results can be interpreted with the use of a single non-dimensional parameter, <inline-formula> <math display="inline"> <semantics> <msub> <mi>F</mi> <mi>l</mi> </msub> </semantics> </math> </inline-formula>, the so-called fouling number, which simply reads <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>F</mi> <mi>l</mi> </msub> <mo>&#8801;</mo> <mi>P</mi> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msubsup> <mi>N</mi> <mi>d</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </semantics> </math> </inline-formula>. Now rendered possible, the overall fit of the numerical data allows us to put forward analytical final expressions, which involve all the physical parameters and allow us to retrieve the experimental trends.https://www.mdpi.com/2077-0375/9/4/48membrane separationcross-flow filtrationpolarization of concentrationlimiting fluxreversible foulingStarling–Darcy boundary conditions
spellingShingle Pierre Haldenwang
Braulio Bernales
Pierrette Guichardon
Nelson Ibaseta
Simple Theoretical Results on Reversible Fouling in Cross-Flow Membrane Filtration
Membranes
membrane separation
cross-flow filtration
polarization of concentration
limiting flux
reversible fouling
Starling–Darcy boundary conditions
title Simple Theoretical Results on Reversible Fouling in Cross-Flow Membrane Filtration
title_full Simple Theoretical Results on Reversible Fouling in Cross-Flow Membrane Filtration
title_fullStr Simple Theoretical Results on Reversible Fouling in Cross-Flow Membrane Filtration
title_full_unstemmed Simple Theoretical Results on Reversible Fouling in Cross-Flow Membrane Filtration
title_short Simple Theoretical Results on Reversible Fouling in Cross-Flow Membrane Filtration
title_sort simple theoretical results on reversible fouling in cross flow membrane filtration
topic membrane separation
cross-flow filtration
polarization of concentration
limiting flux
reversible fouling
Starling–Darcy boundary conditions
url https://www.mdpi.com/2077-0375/9/4/48
work_keys_str_mv AT pierrehaldenwang simpletheoreticalresultsonreversiblefoulingincrossflowmembranefiltration
AT brauliobernales simpletheoreticalresultsonreversiblefoulingincrossflowmembranefiltration
AT pierretteguichardon simpletheoreticalresultsonreversiblefoulingincrossflowmembranefiltration
AT nelsonibaseta simpletheoreticalresultsonreversiblefoulingincrossflowmembranefiltration