Impact of High-Performance Expansion and Shrinkage-Reducing Agents on the Mechanical Properties and Shrinkage Compensation of High-Strength Concrete

A large number of binder ingredients such as cement and active mineral admixtures are used in the preparation of high-strength concrete, and the water:binder ratio is extremely low. This leads to a large amount of shrinkage of concrete at the early stage of curing, which poses a great threat to the...

Full description

Bibliographic Details
Main Authors: Yun-Feng Xi, Jin Lee, Bao-Ling Chen, Bing Yang, Miao-Zhang Yu, Xiao-Zhou Yan, Li Zhu
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/13/3/717
Description
Summary:A large number of binder ingredients such as cement and active mineral admixtures are used in the preparation of high-strength concrete, and the water:binder ratio is extremely low. This leads to a large amount of shrinkage of concrete at the early stage of curing, which poses a great threat to the safety and durability of the structure. To solve the cracking problem of high-strength concrete induced by high shrinkage, we choose to change the admixture to solve it. In this study, a high-performance expansion agent (HPEA) and shrinkage-reducing agent, which are currently studied in a small number, were selected by changing the way of admixture, and their effects on the strength and shrinkage of high-strength concrete were compared and analyzed. The results show that the addition of a HPEA is beneficial to the compressive strength of concrete and sufficient expansion can be obtained by using a high amount of HPEA, but there is an excessive and delayed expansion to produce cracks in the later stage. A shrinkage-reducing agent plays an adverse role in the development of concrete strength, but it performs better in inhibiting shrinkage. The combination of a HPEA and shrinkage reducing agent can largely avoid the formation of cracks, and the two have a certain synergy. The main reason is that a HPEA compensates for some of the negative effects of a shrinkage-reducing agent on concrete strength, and the shrinkage-reducing agent further strengthens the inhibition effect of a HPEA on concrete shrinkage, and to some extent avoids the risk of cracks caused by delayed expansion caused by admixture problems.
ISSN:2075-5309