Sar1, a Novel Regulator of ER-Mitochondrial Contact Sites.

Endoplasmic reticulum (ER)-mitochondrial contact sites play a pivotal role in exchange of lipids and ions between the two organelles. How size and function of these contact sites are regulated remains elusive. Here we report a previously unanticipated, but conserved role of the small GTPase Sar1 in...

Full description

Bibliographic Details
Main Authors: Karin B Ackema, Cristina Prescianotto-Baschong, Jürgen Hench, Shyi Chyi Wang, Zhi Hui Chia, Heidi Mergentaler, Fredéric Bard, Stephan Frank, Anne Spang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4839682?pdf=render
Description
Summary:Endoplasmic reticulum (ER)-mitochondrial contact sites play a pivotal role in exchange of lipids and ions between the two organelles. How size and function of these contact sites are regulated remains elusive. Here we report a previously unanticipated, but conserved role of the small GTPase Sar1 in the regulation of ER-mitochondrial contact site size. Activated Sar1 introduces membrane curvature through its N-terminal amphiphatic helix at the ER-mitochondria interphase and thereby reducing contact size. Conversely, the S. cerevisiae N3-Sar1 mutant, in which curvature induction is decreased, caused an increase in ER-mitochondrial contacts. As a consequence, ER tubules are no longer able to mark the prospective scission site on mitochondria, thereby impairing mitochondrial dynamics. Consistently, blocking mitochondrial fusion partially rescued, whereas deletion of the dynamin-like protein enhanced the phenotype in the sar1D32G mutant. We conclude that Sar1 regulates the size of ER-mitochondria contact sites through its effects on membrane curvature.
ISSN:1932-6203