Exploring a Graph Complement in Quadratic Congruence

In this work, we investigate essential definitions, defining <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi></mrow></semantics></math></inline-formula> as a s...

Full description

Bibliographic Details
Main Authors: Hamza Daoub, Osama Shafah, Ahmad A. Almutlg
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/16/2/213
_version_ 1797296965826904064
author Hamza Daoub
Osama Shafah
Ahmad A. Almutlg
author_facet Hamza Daoub
Osama Shafah
Ahmad A. Almutlg
author_sort Hamza Daoub
collection DOAJ
description In this work, we investigate essential definitions, defining <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi></mrow></semantics></math></inline-formula> as a simple graph with vertices in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="double-struck">Z</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> and subgraphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>Γ</mo></mrow><mrow><mi>u</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>Γ</mo></mrow><mrow><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula> as unit residue and quadratic residue graphs modulo <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi></mrow></semantics></math></inline-formula>, respectively. The investigation extends to the degree of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>Γ</mo></mrow><mrow><mi>u</mi></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>Γ</mo></mrow><mrow><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula>, illuminating the properties of these subgraphs in the context of quadratic congruences.
first_indexed 2024-03-07T22:12:28Z
format Article
id doaj.art-d5b7aeaf56cf482cabb2e218b07bf533
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-07T22:12:28Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-d5b7aeaf56cf482cabb2e218b07bf5332024-02-23T15:36:02ZengMDPI AGSymmetry2073-89942024-02-0116221310.3390/sym16020213Exploring a Graph Complement in Quadratic CongruenceHamza Daoub0Osama Shafah1Ahmad A. Almutlg2Department of Mathematics, Faculty of Science, Zawia University, Zawia 16418, LibyaDepartment of Mathematics, Faculty of Science, Sabratha University, Sabratha 00218, LibyaDepartment of Mathematics, College of Science and Arts, Methnab, Qassim University, Buraidah 51931, Saudi ArabiaIn this work, we investigate essential definitions, defining <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi></mrow></semantics></math></inline-formula> as a simple graph with vertices in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="double-struck">Z</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> and subgraphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>Γ</mo></mrow><mrow><mi>u</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>Γ</mo></mrow><mrow><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula> as unit residue and quadratic residue graphs modulo <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi></mrow></semantics></math></inline-formula>, respectively. The investigation extends to the degree of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>Γ</mo></mrow><mrow><mi>u</mi></mrow></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>Γ</mo></mrow><mrow><mi>q</mi></mrow></msub></mrow></semantics></math></inline-formula>, illuminating the properties of these subgraphs in the context of quadratic congruences.https://www.mdpi.com/2073-8994/16/2/213quadratic residuesquadratic congruencesimple graphcomposite modulusvertex degreegraph complement
spellingShingle Hamza Daoub
Osama Shafah
Ahmad A. Almutlg
Exploring a Graph Complement in Quadratic Congruence
Symmetry
quadratic residues
quadratic congruence
simple graph
composite modulus
vertex degree
graph complement
title Exploring a Graph Complement in Quadratic Congruence
title_full Exploring a Graph Complement in Quadratic Congruence
title_fullStr Exploring a Graph Complement in Quadratic Congruence
title_full_unstemmed Exploring a Graph Complement in Quadratic Congruence
title_short Exploring a Graph Complement in Quadratic Congruence
title_sort exploring a graph complement in quadratic congruence
topic quadratic residues
quadratic congruence
simple graph
composite modulus
vertex degree
graph complement
url https://www.mdpi.com/2073-8994/16/2/213
work_keys_str_mv AT hamzadaoub exploringagraphcomplementinquadraticcongruence
AT osamashafah exploringagraphcomplementinquadraticcongruence
AT ahmadaalmutlg exploringagraphcomplementinquadraticcongruence