On reducibility of linear quasiperiodic systems with bounded solutions

It is proved that nonreducible systems form a dense $G_{\delta}$ subset in the space of systems of linear differential equations with quasiperiodic skew-symmetric matrices and fix frequency module. There exists an open set of nonreducible systems in this space.

Bibliographic Details
Main Author: Viktor Tkachenko
Format: Article
Language:English
Published: University of Szeged 2000-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=55
_version_ 1797830808789057536
author Viktor Tkachenko
author_facet Viktor Tkachenko
author_sort Viktor Tkachenko
collection DOAJ
description It is proved that nonreducible systems form a dense $G_{\delta}$ subset in the space of systems of linear differential equations with quasiperiodic skew-symmetric matrices and fix frequency module. There exists an open set of nonreducible systems in this space.
first_indexed 2024-04-09T13:42:00Z
format Article
id doaj.art-d5c21e597b89491688a887f1351e4af8
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:42:00Z
publishDate 2000-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-d5c21e597b89491688a887f1351e4af82023-05-09T07:52:56ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752000-01-0119992911110.14232/ejqtde.1999.5.2955On reducibility of linear quasiperiodic systems with bounded solutionsViktor Tkachenko0Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev, UkraineIt is proved that nonreducible systems form a dense $G_{\delta}$ subset in the space of systems of linear differential equations with quasiperiodic skew-symmetric matrices and fix frequency module. There exists an open set of nonreducible systems in this space.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=55
spellingShingle Viktor Tkachenko
On reducibility of linear quasiperiodic systems with bounded solutions
Electronic Journal of Qualitative Theory of Differential Equations
title On reducibility of linear quasiperiodic systems with bounded solutions
title_full On reducibility of linear quasiperiodic systems with bounded solutions
title_fullStr On reducibility of linear quasiperiodic systems with bounded solutions
title_full_unstemmed On reducibility of linear quasiperiodic systems with bounded solutions
title_short On reducibility of linear quasiperiodic systems with bounded solutions
title_sort on reducibility of linear quasiperiodic systems with bounded solutions
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=55
work_keys_str_mv AT viktortkachenko onreducibilityoflinearquasiperiodicsystemswithboundedsolutions