SAMStyler: Enhancing Visual Creativity With Neural Style Transfer and Segment Anything Model (SAM)
Neural Style Transfer (NST) is a popular technique of computer vision where the content of an image is blended with the style of another, which results in a fused image with certain properties of both original images. This approach has practical applications in various domains and has garnered signi...
المؤلفون الرئيسيون: | Konstantinos Psychogyios, Helen C. Leligou, Filisia Melissari, Stavroula Bourou, Zacharias Anastasakis, Theodore Zahariadis |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
IEEE
2023-01-01
|
سلاسل: | IEEE Access |
الموضوعات: | |
الوصول للمادة أونلاين: | https://ieeexplore.ieee.org/document/10250775/ |
مواد مشابهة
-
The Segment Anything Model (SAM) for accelerating the smart farming revolution
حسب: Alberto Carraro, وآخرون
منشور في: (2023-12-01) -
Crater Detection and Population Statistics in Tianwen-1 Landing Area Based on Segment Anything Model (SAM)
حسب: Yaqi Zhao, وآخرون
منشور في: (2024-05-01) -
GDPGO-SAM: An Unsupervised Fine Segmentation of Desert Vegetation Driven by Grounding DINO Prompt Generation and Optimization Segment Anything Model
حسب: Shuzhen Hua, وآخرون
منشور في: (2025-02-01) -
Breast Delineation in Full-Field Digital Mammography Using the Segment Anything Model
حسب: Andrés Larroza, وآخرون
منشور في: (2024-05-01) -
WaterSAM: Adapting SAM for Underwater Object Segmentation
حسب: Yang Hong, وآخرون
منشور في: (2024-09-01)