Thioredoxin-interacting protein gene expression via MondoA is rapidly and transiently suppressed during inflammatory responses.

Whereas accumulating evidence indicates that a number of inflammatory genes are induced by activation of nuclear factor-κB and other transcription factors, less is known about genes that are suppressed by proinflammatory stimuli. Here we show that expression of thioredoxin-interacting protein (Txnip...

Full description

Bibliographic Details
Main Authors: Yasuyoshi Kanari, Yuki Sato, Satoru Aoyama, Tatsushi Muta
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3592832?pdf=render
Description
Summary:Whereas accumulating evidence indicates that a number of inflammatory genes are induced by activation of nuclear factor-κB and other transcription factors, less is known about genes that are suppressed by proinflammatory stimuli. Here we show that expression of thioredoxin-interacting protein (Txnip) is dramatically suppressed both in mRNA and protein levels upon stimulation with lipopolysaccharide in mouse and human macrophages. In addition to lipopolysaccharide, a Toll-like receptor 4 ligand, stimulation with other Toll-like receptor ligands such as CpG DNA also suppressed Txnip expression. Not only the Toll-like receptor ligands, but also other proinflammatory stimulators, such as interleukin-1β and tumor necrosis factor-α elicited the similar response in fibroblasts. Suppression of Txnip by lipopolysaccharide is accompanied by a decrease of the glucose sensing transcription factor MondoA in the nuclei and dissociation of the MondoA:Mlx complex that bound to the carbohydrate-response elements in the Txnip promoter in unstimulated cells. Lipopolysaccharide-mediated decrease of nuclear MondoA was inhibited in the presence of 2-deoxyglucose. Furthermore, blockage of glyceraldehyde-3-phosphate dehydrogenase by iodoacetate alleviated the suppression of Txnip mRNA by lipopolysaccharide, suggesting the involvement of glucose-metabolites in the regulation. Since Txnip is implicated in the regulation of glucose metabolism, this observation links between inflammatory responses and metabolic regulation.
ISSN:1932-6203