An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine Learning
Water quality deterioration is a serious problem with the increase in the urbanization rate. However, water quality monitoring uses grab sampling of physico-chemical parameters and a water quality index method to assess water quality. Both processes are lengthy and expensive. These traditional indic...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/12/24/12787 |
_version_ | 1797461654596747264 |
---|---|
author | Mehreen Ahmed Rafia Mumtaz Zahid Anwar |
author_facet | Mehreen Ahmed Rafia Mumtaz Zahid Anwar |
author_sort | Mehreen Ahmed |
collection | DOAJ |
description | Water quality deterioration is a serious problem with the increase in the urbanization rate. However, water quality monitoring uses grab sampling of physico-chemical parameters and a water quality index method to assess water quality. Both processes are lengthy and expensive. These traditional indices are biased towards the physico-chemical parameters because samples are only collected from certain sampling points. These limitations make the current water quality index method unsuitable for any water body in the world. Thus, we develop an enhanced water quality index method based on a semi-supervised machine learning technique to determine water quality. This method follows five steps: (i) parameter selection, (ii) sub-index calculation, (iii) weight assignment, (iv) aggregation of sub-indices and (v) classification. Physico-chemical, air, meteorological and hydrological, topographical parameters are acquired for the stream network of the Rawal watershed. Min-max normalization is used to obtain sub-indices, and weights are assigned with tree-based techniques, i.e., LightGBM, Random Forest, CatBoost, AdaBoost and XGBoost. As a result, the proposed technique removes the uncertainties in the traditional indexing with a 100% classification rate, removing the necessity of including all parameters for classification. Electric conductivity, secchi disk depth, dissolved oxygen, lithology and geology are amongst the high weighting parameters of using LightGBM and CatBoost with 99.1% and 99.3% accuracy, respectively. In fact, seasonal variations are observed for the classified stream network with a shift from 55:45% (January) to 10:90% (December) ratio for the medium to bad class. This verifies the validity of the proposed method that will contribute to water management planning globally. |
first_indexed | 2024-03-09T17:22:31Z |
format | Article |
id | doaj.art-d5cf428be48949e88fd7adacda678749 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-09T17:22:31Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-d5cf428be48949e88fd7adacda6787492023-11-24T13:05:04ZengMDPI AGApplied Sciences2076-34172022-12-0112241278710.3390/app122412787An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine LearningMehreen Ahmed0Rafia Mumtaz1Zahid Anwar2School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, PakistanSchool of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, PakistanDepartment of Computer Science, North Dakota State University (NDSU), Fargo, ND 58102, USAWater quality deterioration is a serious problem with the increase in the urbanization rate. However, water quality monitoring uses grab sampling of physico-chemical parameters and a water quality index method to assess water quality. Both processes are lengthy and expensive. These traditional indices are biased towards the physico-chemical parameters because samples are only collected from certain sampling points. These limitations make the current water quality index method unsuitable for any water body in the world. Thus, we develop an enhanced water quality index method based on a semi-supervised machine learning technique to determine water quality. This method follows five steps: (i) parameter selection, (ii) sub-index calculation, (iii) weight assignment, (iv) aggregation of sub-indices and (v) classification. Physico-chemical, air, meteorological and hydrological, topographical parameters are acquired for the stream network of the Rawal watershed. Min-max normalization is used to obtain sub-indices, and weights are assigned with tree-based techniques, i.e., LightGBM, Random Forest, CatBoost, AdaBoost and XGBoost. As a result, the proposed technique removes the uncertainties in the traditional indexing with a 100% classification rate, removing the necessity of including all parameters for classification. Electric conductivity, secchi disk depth, dissolved oxygen, lithology and geology are amongst the high weighting parameters of using LightGBM and CatBoost with 99.1% and 99.3% accuracy, respectively. In fact, seasonal variations are observed for the classified stream network with a shift from 55:45% (January) to 10:90% (December) ratio for the medium to bad class. This verifies the validity of the proposed method that will contribute to water management planning globally.https://www.mdpi.com/2076-3417/12/24/12787water quality assessmentphysico-chemical parameterswater quality indexair qualitymeteorologicalremote sensing |
spellingShingle | Mehreen Ahmed Rafia Mumtaz Zahid Anwar An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine Learning Applied Sciences water quality assessment physico-chemical parameters water quality index air quality meteorological remote sensing |
title | An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine Learning |
title_full | An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine Learning |
title_fullStr | An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine Learning |
title_full_unstemmed | An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine Learning |
title_short | An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine Learning |
title_sort | enhanced water quality index for water quality monitoring using remote sensing and machine learning |
topic | water quality assessment physico-chemical parameters water quality index air quality meteorological remote sensing |
url | https://www.mdpi.com/2076-3417/12/24/12787 |
work_keys_str_mv | AT mehreenahmed anenhancedwaterqualityindexforwaterqualitymonitoringusingremotesensingandmachinelearning AT rafiamumtaz anenhancedwaterqualityindexforwaterqualitymonitoringusingremotesensingandmachinelearning AT zahidanwar anenhancedwaterqualityindexforwaterqualitymonitoringusingremotesensingandmachinelearning AT mehreenahmed enhancedwaterqualityindexforwaterqualitymonitoringusingremotesensingandmachinelearning AT rafiamumtaz enhancedwaterqualityindexforwaterqualitymonitoringusingremotesensingandmachinelearning AT zahidanwar enhancedwaterqualityindexforwaterqualitymonitoringusingremotesensingandmachinelearning |