Placement of multiple low order resonance frequencies due to rigid coupling of a rigid and small subsystem to a main system

When a rigid and small subsystem is rigidly coupled to a main system of a design target, it would be helpful if the multiple resonance frequencies moved by this coupling could be properly assigned so that they do not coincide with the peak of excitation frequencies to avoid resonance. In this paper,...

Full description

Bibliographic Details
Main Authors: Yuichi MATSUMURA, Hiroto WATANABE, Donghun HWANG
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2021-09-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/87/902/87_21-00160/_pdf/-char/en
Description
Summary:When a rigid and small subsystem is rigidly coupled to a main system of a design target, it would be helpful if the multiple resonance frequencies moved by this coupling could be properly assigned so that they do not coincide with the peak of excitation frequencies to avoid resonance. In this paper, a rigid and small subsystem is regarded as a rigid body, and a visualization design method to optimize the assignment of multiple resonance frequencies is developed through the design of the mass matrix of the rigid and small subsystem. In this method, the mass matrix is diagonalized by using the principal axis of inertia of the rigid body, and then the frequency band that satisfies the resonance formation condition is predicted by the kernel Compliance Analysis. Furthermore, by combining this method with Weyl's inequality theorem, we made it possible to design the assignment of multiple resonance frequencies while looking at a single figure.
ISSN:2187-9761