Enhanced electrochemical performance of Bi2O3 via facile synthesis as anode material for ultra-long cycle lifespan lithium-ion batteries
The urgent demand for stable electrode materials, especially for the anode, arises in the pursuit of high-energy Li-ion batteries. This research focuses on bismuth oxide (Bi2O3) and uncovers its performance through a straightforward, commercially viable synthesis route, along with the optimization o...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-02-01
|
Series: | Electrochemistry Communications |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S138824812300231X |
Summary: | The urgent demand for stable electrode materials, especially for the anode, arises in the pursuit of high-energy Li-ion batteries. This research focuses on bismuth oxide (Bi2O3) and uncovers its performance through a straightforward, commercially viable synthesis route, along with the optimization of binders and electrolytes. By employing a sodium carboxymethyl cellulose binder and fluoroethylene carbonate additives, the Bi2O3 anode demonstrates significantly enhanced performance compared to prior studies. It attains an impressive initial capacity of approximately 750 mA h g−1, exhibits excellent rate capability at 1000 mA g−1 and maintains stable cycling performance over 6000 cycles. |
---|---|
ISSN: | 1388-2481 |