Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates

The dynamical equations of the susceptible-infected-recovered/removed (SIR) epidemics model play an important role in predicting and/or analyzing the temporal evolution of epidemic outbreaks. Crucial input quantities are the time-dependent infection (<inline-formula><math xmlns="http:/...

Full description

Bibliographic Details
Main Authors: Reinhard Schlickeiser, Martin Kröger
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:COVID
Subjects:
Online Access:https://www.mdpi.com/2673-8112/3/12/123
_version_ 1797381553086529536
author Reinhard Schlickeiser
Martin Kröger
author_facet Reinhard Schlickeiser
Martin Kröger
author_sort Reinhard Schlickeiser
collection DOAJ
description The dynamical equations of the susceptible-infected-recovered/removed (SIR) epidemics model play an important role in predicting and/or analyzing the temporal evolution of epidemic outbreaks. Crucial input quantities are the time-dependent infection (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>) and recovery (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>) rates regulating the transitions between the compartments <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>→</mo><mi>I</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>→</mo><mi>R</mi></mrow></semantics></math></inline-formula>, respectively. Accurate analytical approximations for the temporal dependence of the rate of new infections <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>J</mi><mo>˚</mo></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and the corresponding cumulative fraction of new infections <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>J</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><msubsup><mo>∫</mo><mrow><msub><mi>t</mi><mn>0</mn></msub></mrow><mi>t</mi></msubsup><mi>d</mi><mi>x</mi><mover accent="true"><mi>J</mi><mo>˚</mo></mover><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are available in the literature for either stationary infection and recovery rates or for a stationary value of the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Here, a new and original accurate analytical approximation is derived for general, arbitrary, and different temporal dependencies of the infection and recovery rates, which is valid for not-too-late times after the start of the infection when the cumulative fraction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>≪</mo><mn>1</mn></mrow></semantics></math></inline-formula> is much less than unity. The comparison of the analytical approximation with the exact numerical solution of the SIR equations for different illustrative examples proves the accuracy of the analytical approach.
first_indexed 2024-03-08T20:53:09Z
format Article
id doaj.art-d5d532da4cd24f4eb1c7561c96af6de6
institution Directory Open Access Journal
issn 2673-8112
language English
last_indexed 2024-03-08T20:53:09Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series COVID
spelling doaj.art-d5d532da4cd24f4eb1c7561c96af6de62023-12-22T14:01:40ZengMDPI AGCOVID2673-81122023-12-013121781179610.3390/covid3120123Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection RatesReinhard Schlickeiser0Martin Kröger1Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, GermanyMagnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, SwitzerlandThe dynamical equations of the susceptible-infected-recovered/removed (SIR) epidemics model play an important role in predicting and/or analyzing the temporal evolution of epidemic outbreaks. Crucial input quantities are the time-dependent infection (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>) and recovery (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>) rates regulating the transitions between the compartments <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>→</mo><mi>I</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>→</mo><mi>R</mi></mrow></semantics></math></inline-formula>, respectively. Accurate analytical approximations for the temporal dependence of the rate of new infections <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>J</mi><mo>˚</mo></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and the corresponding cumulative fraction of new infections <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>J</mi><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>+</mo><msubsup><mo>∫</mo><mrow><msub><mi>t</mi><mn>0</mn></msub></mrow><mi>t</mi></msubsup><mi>d</mi><mi>x</mi><mover accent="true"><mi>J</mi><mo>˚</mo></mover><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> are available in the literature for either stationary infection and recovery rates or for a stationary value of the ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>a</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Here, a new and original accurate analytical approximation is derived for general, arbitrary, and different temporal dependencies of the infection and recovery rates, which is valid for not-too-late times after the start of the infection when the cumulative fraction <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>J</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>≪</mo><mn>1</mn></mrow></semantics></math></inline-formula> is much less than unity. The comparison of the analytical approximation with the exact numerical solution of the SIR equations for different illustrative examples proves the accuracy of the analytical approach.https://www.mdpi.com/2673-8112/3/12/123epidemicstemporal developmentcoronavirusSARS CoV-2COVID-19
spellingShingle Reinhard Schlickeiser
Martin Kröger
Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates
COVID
epidemics
temporal development
coronavirus
SARS CoV-2
COVID-19
title Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates
title_full Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates
title_fullStr Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates
title_full_unstemmed Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates
title_short Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates
title_sort analytical solution of the susceptible infected recovered removed model for the not too late temporal evolution of epidemics for general time dependent recovery and infection rates
topic epidemics
temporal development
coronavirus
SARS CoV-2
COVID-19
url https://www.mdpi.com/2673-8112/3/12/123
work_keys_str_mv AT reinhardschlickeiser analyticalsolutionofthesusceptibleinfectedrecoveredremovedmodelforthenottoolatetemporalevolutionofepidemicsforgeneraltimedependentrecoveryandinfectionrates
AT martinkroger analyticalsolutionofthesusceptibleinfectedrecoveredremovedmodelforthenottoolatetemporalevolutionofepidemicsforgeneraltimedependentrecoveryandinfectionrates