Summary: | <p>Abstract</p> <p>Background</p> <p>Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production.</p> <p>Results</p> <p>Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient <it>irregular xylem</it> (<it>irx</it>) mutants <it>irx7</it>, <it>irx8</it> and <it>irx9</it> exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis <it>irx7</it>, <it>irx8</it> and <it>irx9</it> mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the <it>VND6</it> and <it>VND7</it> transcription factor genes. The growth phenotype, stem breaking strength, and <it>irx</it> morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The <it>VND7</it> promoter yielded a more complete complementation of the <it>irx</it> phenotype than the <it>VND6</it> promoter.</p> <p>Conclusions</p> <p>Spatial and temporal deposition of xylan in the secondary cell wall of Arabidopsis can be manipulated by using the promoter regions of vessel-specific genes to express xylan biosynthetic genes. The expression of xylan specifically in the xylem vessels is sufficient to complement the <it>irx</it> phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels.</p>
|