Ultrabroadband density of states of amorphous In-Ga-Zn-O

The subgap density of states of amorphous indium gallium zinc oxide (a-IGZO) is obtained using the ultrabroadband photoconduction response of thin-film transistors (TFTs). Density-functional theory simulations classify the origin of the measured subgap density of states peaks as a series of donorlik...

Full description

Bibliographic Details
Main Authors: Kyle T. Vogt, Christopher E. Malmberg, Jacob C. Buchanan, George W. Mattson, G. Mirek Brandt, Dylan B. Fast, Paul H.-Y. Cheong, John F. Wager, Matt W. Graham
Format: Article
Language:English
Published: American Physical Society 2020-09-01
Series:Physical Review Research
Online Access:http://doi.org/10.1103/PhysRevResearch.2.033358
Description
Summary:The subgap density of states of amorphous indium gallium zinc oxide (a-IGZO) is obtained using the ultrabroadband photoconduction response of thin-film transistors (TFTs). Density-functional theory simulations classify the origin of the measured subgap density of states peaks as a series of donorlike oxygen vacancy states and acceptorlike Zn vacancy states. Donor peaks are found both near the conduction band and deep in the subgap, with peak densities of 10^{17}−10^{18}cm^{−3}eV^{−1}. Two deep acceptorlike peaks lie adjacent to the valance-band Urbach tail region at 2.0–2.5 eV below the conduction-band edge, with peak densities in the range of 10^{18}cm^{−3}eV^{−1}. By applying detailed charge balance, we show that increasing the deep acceptor density strongly shifts the a-IGZO TFT threshold voltage to more positive values. Photoionization (hν>2.0eV) of deep acceptors is one cause of transfer curve hysteresis in a-IGZO TFTs, owing to longer recombination lifetimes as electrons are captured into acceptorlike vacancies.
ISSN:2643-1564