Isotopic characterization of nitrogen oxides (NO<sub><i>x</i></sub>), nitrous acid (HONO), and nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>) from laboratory biomass burning during FIREX

<p>New techniques have recently been developed and applied to capture reactive nitrogen species, including nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scr...

Full description

Bibliographic Details
Main Authors: J. Chai, D. J. Miller, E. Scheuer, J. Dibb, V. Selimovic, R. Yokelson, K. J. Zarzana, S. S. Brown, A. R. Koss, C. Warneke, M. Hastings
Format: Article
Language:English
Published: Copernicus Publications 2019-11-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/6303/2019/amt-12-6303-2019.pdf
_version_ 1818920341904293888
author J. Chai
D. J. Miller
D. J. Miller
E. Scheuer
J. Dibb
V. Selimovic
R. Yokelson
K. J. Zarzana
K. J. Zarzana
K. J. Zarzana
S. S. Brown
S. S. Brown
A. R. Koss
A. R. Koss
A. R. Koss
A. R. Koss
C. Warneke
C. Warneke
M. Hastings
author_facet J. Chai
D. J. Miller
D. J. Miller
E. Scheuer
J. Dibb
V. Selimovic
R. Yokelson
K. J. Zarzana
K. J. Zarzana
K. J. Zarzana
S. S. Brown
S. S. Brown
A. R. Koss
A. R. Koss
A. R. Koss
A. R. Koss
C. Warneke
C. Warneke
M. Hastings
author_sort J. Chai
collection DOAJ
description <p>New techniques have recently been developed and applied to capture reactive nitrogen species, including nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>=</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="f0add4bbe2151ecfa7cd944e28fa7e9e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00004.svg" width="85pt" height="13pt" src="amt-12-6303-2019-ie00004.png"/></svg:svg></span></span>), nitrous acid (HONO), nitric acid (<span class="inline-formula">HNO<sub>3</sub></span>), and particulate nitrate (<span class="inline-formula"><i>p</i></span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="b3512ed4eb493ff037a5c39221523c47"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00005.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00005.png"/></svg:svg></span></span>), for accurate measurement of their isotopic composition. Here, we report – for the first time – the isotopic composition of HONO from biomass burning (BB) emissions collected during the Fire Influence on Regional to Global Environments Experiment (FIREX, later evolved into FIREX-AQ) at the Missoula Fire Science Laboratory in the fall of 2016. We used our newly developed annular denuder system (ADS), which was verified to completely capture HONO associated with BB in comparison with four other high-time-resolution concentration measurement techniques, including mist chamber–ion chromatography (MC–IC), open-path Fourier transform infrared spectroscopy (OP-FTIR), cavity-enhanced spectroscopy (CES), and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF).</p> <p>In 20 “stack” fires (direct emission within <span class="inline-formula">∼5</span>&thinsp;s of production by the fire) that burned various biomass materials from the western US, <span class="inline-formula"><i>δ</i><sup>15</sup>N</span>–<span class="inline-formula">NO<sub><i>x</i></sub></span> ranges from <span class="inline-formula">−4.3</span>&thinsp;‰ to <span class="inline-formula">+7.0</span>&thinsp;‰, falling near the middle of the range reported in previous work. The first measurements of <span class="inline-formula"><i>δ</i><sup>15</sup>N</span>–HONO and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span>–HONO in biomass burning smoke reveal a range of <span class="inline-formula">−5.3</span>&thinsp;‰ to <span class="inline-formula">+5.8</span>&thinsp;‰ and <span class="inline-formula">+5.2</span>&thinsp;‰ to <span class="inline-formula">+15.2</span>&thinsp;‰, respectively. Both HONO and <span class="inline-formula">NO<sub><i>x</i></sub></span> are sourced from N in the biomass fuel, and <span class="inline-formula"><i>δ</i><sup>15</sup>N</span>–HONO and <span class="inline-formula"><i>δ</i><sup>15</sup>N</span>–<span class="inline-formula">NO<sub><i>x</i></sub></span> are strongly correlated (<span class="inline-formula"><i>R</i><sup>2</sup>=0.89</span>, <span class="inline-formula"><i>p</i>&lt;0.001</span>), suggesting HONO is directly formed via subsequent chain reactions of <span class="inline-formula">NO<sub><i>x</i></sub></span> emitted from biomass combustion. Only 5 of 20 <span class="inline-formula"><i>p</i></span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M29" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="f406d9210c9988b6f1f99fbfd13290fc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00006.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00006.png"/></svg:svg></span></span> samples had a sufficient amount for isotopic analysis and showed <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> of <span class="inline-formula"><i>p</i></span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M33" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2fee02b4e30ea20d69bb3f8f98615992"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00007.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00007.png"/></svg:svg></span></span> ranging from <span class="inline-formula">−10.6</span>&thinsp;‰ to <span class="inline-formula">−7.4</span>&thinsp;‰ and <span class="inline-formula">+11.5</span>&thinsp;‰ to <span class="inline-formula">+14.8</span>&thinsp;‰, respectively.</p> <p>Our <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> of <span class="inline-formula">NO<sub><i>x</i></sub></span>, HONO, and <span class="inline-formula"><i>p</i></span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M41" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="12193b9fdcecd5060489ac774923195d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00008.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00008.png"/></svg:svg></span></span> ranges can serve as important biomass burning source signatures, useful for constraining emissions of these species in environmental applications. The <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> of HONO and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M43" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2bdfa65311a7f5f5135cb65d40e792b4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00009.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00009.png"/></svg:svg></span></span> obtained here verify that our method is capable of determining the oxygen isotopic composition in BB plumes. The <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> values for both of these species reflect laboratory conditions (i.e., a lack of photochemistry) and would be expected to track with the influence of different oxidation pathways in real environments. The methods used in this study will be further applied in<span id="page6304"/> future field studies to quantitatively track reactive nitrogen cycling in fresh and aged western US wildfire plumes.</p>
first_indexed 2024-12-20T01:20:13Z
format Article
id doaj.art-d5fbe841ec8d450fb2fe794e177b9017
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-20T01:20:13Z
publishDate 2019-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-d5fbe841ec8d450fb2fe794e177b90172022-12-21T19:58:28ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-11-01126303631710.5194/amt-12-6303-2019Isotopic characterization of nitrogen oxides (NO<sub><i>x</i></sub>), nitrous acid (HONO), and nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>) from laboratory biomass burning during FIREXJ. Chai0D. J. Miller1D. J. Miller2E. Scheuer3J. Dibb4V. Selimovic5R. Yokelson6K. J. Zarzana7K. J. Zarzana8K. J. Zarzana9S. S. Brown10S. S. Brown11A. R. Koss12A. R. Koss13A. R. Koss14A. R. Koss15C. Warneke16C. Warneke17M. Hastings18Department of Earth, Environmental and Planetary Sciences, and Institute at Brown for Environment and Society, Brown University, Providence, RI, USADepartment of Earth, Environmental and Planetary Sciences, and Institute at Brown for Environment and Society, Brown University, Providence, RI, USAnow at: Environmental Defense Fund, Boston, MA, USAInstitute for the Study of Earth, Ocean and Space, University of New Hampshire, Durham, NH, USAInstitute for the Study of Earth, Ocean and Space, University of New Hampshire, Durham, NH, USADepartment of Chemistry, University of Montana, Missoula, USADepartment of Chemistry, University of Montana, Missoula, USAChemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USAnow at: Department of Chemistry, University of Colorado, Boulder, CO, USAChemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USADepartment of Chemistry, University of Colorado, Boulder, CO, USAChemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USADepartment of Chemistry, University of Colorado, Boulder, CO, USAnow at: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USACooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USADepartment of Chemistry, University of Colorado, Boulder, CO, USADepartment of Earth, Environmental and Planetary Sciences, and Institute at Brown for Environment and Society, Brown University, Providence, RI, USA<p>New techniques have recently been developed and applied to capture reactive nitrogen species, including nitrogen oxides (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mi>x</mi></msub></mrow><mo>=</mo><mrow class="chem"><mi mathvariant="normal">NO</mi></mrow><mo>+</mo><mrow class="chem"><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">2</mn></msub></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="85pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="f0add4bbe2151ecfa7cd944e28fa7e9e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00004.svg" width="85pt" height="13pt" src="amt-12-6303-2019-ie00004.png"/></svg:svg></span></span>), nitrous acid (HONO), nitric acid (<span class="inline-formula">HNO<sub>3</sub></span>), and particulate nitrate (<span class="inline-formula"><i>p</i></span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="b3512ed4eb493ff037a5c39221523c47"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00005.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00005.png"/></svg:svg></span></span>), for accurate measurement of their isotopic composition. Here, we report – for the first time – the isotopic composition of HONO from biomass burning (BB) emissions collected during the Fire Influence on Regional to Global Environments Experiment (FIREX, later evolved into FIREX-AQ) at the Missoula Fire Science Laboratory in the fall of 2016. We used our newly developed annular denuder system (ADS), which was verified to completely capture HONO associated with BB in comparison with four other high-time-resolution concentration measurement techniques, including mist chamber–ion chromatography (MC–IC), open-path Fourier transform infrared spectroscopy (OP-FTIR), cavity-enhanced spectroscopy (CES), and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF).</p> <p>In 20 “stack” fires (direct emission within <span class="inline-formula">∼5</span>&thinsp;s of production by the fire) that burned various biomass materials from the western US, <span class="inline-formula"><i>δ</i><sup>15</sup>N</span>–<span class="inline-formula">NO<sub><i>x</i></sub></span> ranges from <span class="inline-formula">−4.3</span>&thinsp;‰ to <span class="inline-formula">+7.0</span>&thinsp;‰, falling near the middle of the range reported in previous work. The first measurements of <span class="inline-formula"><i>δ</i><sup>15</sup>N</span>–HONO and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span>–HONO in biomass burning smoke reveal a range of <span class="inline-formula">−5.3</span>&thinsp;‰ to <span class="inline-formula">+5.8</span>&thinsp;‰ and <span class="inline-formula">+5.2</span>&thinsp;‰ to <span class="inline-formula">+15.2</span>&thinsp;‰, respectively. Both HONO and <span class="inline-formula">NO<sub><i>x</i></sub></span> are sourced from N in the biomass fuel, and <span class="inline-formula"><i>δ</i><sup>15</sup>N</span>–HONO and <span class="inline-formula"><i>δ</i><sup>15</sup>N</span>–<span class="inline-formula">NO<sub><i>x</i></sub></span> are strongly correlated (<span class="inline-formula"><i>R</i><sup>2</sup>=0.89</span>, <span class="inline-formula"><i>p</i>&lt;0.001</span>), suggesting HONO is directly formed via subsequent chain reactions of <span class="inline-formula">NO<sub><i>x</i></sub></span> emitted from biomass combustion. Only 5 of 20 <span class="inline-formula"><i>p</i></span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M29" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="f406d9210c9988b6f1f99fbfd13290fc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00006.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00006.png"/></svg:svg></span></span> samples had a sufficient amount for isotopic analysis and showed <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> of <span class="inline-formula"><i>p</i></span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M33" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2fee02b4e30ea20d69bb3f8f98615992"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00007.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00007.png"/></svg:svg></span></span> ranging from <span class="inline-formula">−10.6</span>&thinsp;‰ to <span class="inline-formula">−7.4</span>&thinsp;‰ and <span class="inline-formula">+11.5</span>&thinsp;‰ to <span class="inline-formula">+14.8</span>&thinsp;‰, respectively.</p> <p>Our <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> of <span class="inline-formula">NO<sub><i>x</i></sub></span>, HONO, and <span class="inline-formula"><i>p</i></span><span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M41" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="12193b9fdcecd5060489ac774923195d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00008.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00008.png"/></svg:svg></span></span> ranges can serve as important biomass burning source signatures, useful for constraining emissions of these species in environmental applications. The <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> of HONO and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M43" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="2bdfa65311a7f5f5135cb65d40e792b4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-6303-2019-ie00009.svg" width="25pt" height="16pt" src="amt-12-6303-2019-ie00009.png"/></svg:svg></span></span> obtained here verify that our method is capable of determining the oxygen isotopic composition in BB plumes. The <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> values for both of these species reflect laboratory conditions (i.e., a lack of photochemistry) and would be expected to track with the influence of different oxidation pathways in real environments. The methods used in this study will be further applied in<span id="page6304"/> future field studies to quantitatively track reactive nitrogen cycling in fresh and aged western US wildfire plumes.</p>https://www.atmos-meas-tech.net/12/6303/2019/amt-12-6303-2019.pdf
spellingShingle J. Chai
D. J. Miller
D. J. Miller
E. Scheuer
J. Dibb
V. Selimovic
R. Yokelson
K. J. Zarzana
K. J. Zarzana
K. J. Zarzana
S. S. Brown
S. S. Brown
A. R. Koss
A. R. Koss
A. R. Koss
A. R. Koss
C. Warneke
C. Warneke
M. Hastings
Isotopic characterization of nitrogen oxides (NO<sub><i>x</i></sub>), nitrous acid (HONO), and nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>) from laboratory biomass burning during FIREX
Atmospheric Measurement Techniques
title Isotopic characterization of nitrogen oxides (NO<sub><i>x</i></sub>), nitrous acid (HONO), and nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>) from laboratory biomass burning during FIREX
title_full Isotopic characterization of nitrogen oxides (NO<sub><i>x</i></sub>), nitrous acid (HONO), and nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>) from laboratory biomass burning during FIREX
title_fullStr Isotopic characterization of nitrogen oxides (NO<sub><i>x</i></sub>), nitrous acid (HONO), and nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>) from laboratory biomass burning during FIREX
title_full_unstemmed Isotopic characterization of nitrogen oxides (NO<sub><i>x</i></sub>), nitrous acid (HONO), and nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>) from laboratory biomass burning during FIREX
title_short Isotopic characterization of nitrogen oxides (NO<sub><i>x</i></sub>), nitrous acid (HONO), and nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>) from laboratory biomass burning during FIREX
title_sort isotopic characterization of nitrogen oxides no sub i x i sub nitrous acid hono and nitrate i p i no sub 3 sub sup sup from laboratory biomass burning during firex
url https://www.atmos-meas-tech.net/12/6303/2019/amt-12-6303-2019.pdf
work_keys_str_mv AT jchai isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT djmiller isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT djmiller isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT escheuer isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT jdibb isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT vselimovic isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT ryokelson isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT kjzarzana isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT kjzarzana isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT kjzarzana isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT ssbrown isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT ssbrown isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT arkoss isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT arkoss isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT arkoss isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT arkoss isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT cwarneke isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT cwarneke isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex
AT mhastings isotopiccharacterizationofnitrogenoxidesnosubixisubnitrousacidhonoandnitrateipinosub3subsupsupfromlaboratorybiomassburningduringfirex