Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warrantedResearch in context

Summary: Background: SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cockta...

Full description

Bibliographic Details
Main Authors: Delphine Diana Acar, Wojciech Witkowski, Magdalena Wejda, Ruifang Wei, Tim Desmet, Bert Schepens, Sieglinde De Cae, Koen Sedeyn, Hannah Eeckhaut, Daria Fijalkowska, Kenny Roose, Sandrine Vanmarcke, Anne Poupon, Dirk Jochmans, Xin Zhang, Rana Abdelnabi, Caroline S. Foo, Birgit Weynand, Dirk Reiter, Nico Callewaert, Han Remaut, Johan Neyts, Xavier Saelens, Sarah Gerlo, Linos Vandekerckhove
Format: Article
Language:English
Published: Elsevier 2024-02-01
Series:EBioMedicine
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352396423005261
_version_ 1797353631051153408
author Delphine Diana Acar
Wojciech Witkowski
Magdalena Wejda
Ruifang Wei
Tim Desmet
Bert Schepens
Sieglinde De Cae
Koen Sedeyn
Hannah Eeckhaut
Daria Fijalkowska
Kenny Roose
Sandrine Vanmarcke
Anne Poupon
Dirk Jochmans
Xin Zhang
Rana Abdelnabi
Caroline S. Foo
Birgit Weynand
Dirk Reiter
Nico Callewaert
Han Remaut
Johan Neyts
Xavier Saelens
Sarah Gerlo
Linos Vandekerckhove
author_facet Delphine Diana Acar
Wojciech Witkowski
Magdalena Wejda
Ruifang Wei
Tim Desmet
Bert Schepens
Sieglinde De Cae
Koen Sedeyn
Hannah Eeckhaut
Daria Fijalkowska
Kenny Roose
Sandrine Vanmarcke
Anne Poupon
Dirk Jochmans
Xin Zhang
Rana Abdelnabi
Caroline S. Foo
Birgit Weynand
Dirk Reiter
Nico Callewaert
Han Remaut
Johan Neyts
Xavier Saelens
Sarah Gerlo
Linos Vandekerckhove
author_sort Delphine Diana Acar
collection DOAJ
description Summary: Background: SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. Methods: Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. Findings: Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. Interpretation: Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. Funding: Full list of funders is provided at the end of the manuscript.
first_indexed 2024-03-08T13:33:49Z
format Article
id doaj.art-d61b439c0eca42cfae0b6e3405d320a1
institution Directory Open Access Journal
issn 2352-3964
language English
last_indexed 2024-03-08T13:33:49Z
publishDate 2024-02-01
publisher Elsevier
record_format Article
series EBioMedicine
spelling doaj.art-d61b439c0eca42cfae0b6e3405d320a12024-01-17T04:17:00ZengElsevierEBioMedicine2352-39642024-02-01100104960Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warrantedResearch in contextDelphine Diana Acar0Wojciech Witkowski1Magdalena Wejda2Ruifang Wei3Tim Desmet4Bert Schepens5Sieglinde De Cae6Koen Sedeyn7Hannah Eeckhaut8Daria Fijalkowska9Kenny Roose10Sandrine Vanmarcke11Anne Poupon12Dirk Jochmans13Xin Zhang14Rana Abdelnabi15Caroline S. Foo16Birgit Weynand17Dirk Reiter18Nico Callewaert19Han Remaut20Johan Neyts21Xavier Saelens22Sarah Gerlo23Linos Vandekerckhove24HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, BelgiumHIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, BelgiumHIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, BelgiumHIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, BelgiumDepartment of Basic and Applied Medical Sciences, Ghent University, Ghent 9000, BelgiumVIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, BelgiumVIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, BelgiumVIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, BelgiumVIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, BelgiumVIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, BelgiumVIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, BelgiumVIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, BelgiumMAbSilico, Tours 37000, FranceLaboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, BelgiumLaboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, BelgiumLaboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, BelgiumLaboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, BelgiumDepartment of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven 3000, BelgiumDepartment of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, BelgiumVIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, BelgiumDepartment of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels 1050, BelgiumLaboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, BelgiumVIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, BelgiumHIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, BelgiumHIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium; Corresponding author.Summary: Background: SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. Methods: Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. Findings: Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. Interpretation: Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. Funding: Full list of funders is provided at the end of the manuscript.http://www.sciencedirect.com/science/article/pii/S2352396423005261SARS-CoV-2Neutralizing antibodyIn silico predictionEpitope mappingCovid-19
spellingShingle Delphine Diana Acar
Wojciech Witkowski
Magdalena Wejda
Ruifang Wei
Tim Desmet
Bert Schepens
Sieglinde De Cae
Koen Sedeyn
Hannah Eeckhaut
Daria Fijalkowska
Kenny Roose
Sandrine Vanmarcke
Anne Poupon
Dirk Jochmans
Xin Zhang
Rana Abdelnabi
Caroline S. Foo
Birgit Weynand
Dirk Reiter
Nico Callewaert
Han Remaut
Johan Neyts
Xavier Saelens
Sarah Gerlo
Linos Vandekerckhove
Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warrantedResearch in context
EBioMedicine
SARS-CoV-2
Neutralizing antibody
In silico prediction
Epitope mapping
Covid-19
title Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warrantedResearch in context
title_full Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warrantedResearch in context
title_fullStr Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warrantedResearch in context
title_full_unstemmed Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warrantedResearch in context
title_short Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warrantedResearch in context
title_sort integrating artificial intelligence based epitope prediction in a sars cov 2 antibody discovery pipeline caution is warrantedresearch in context
topic SARS-CoV-2
Neutralizing antibody
In silico prediction
Epitope mapping
Covid-19
url http://www.sciencedirect.com/science/article/pii/S2352396423005261
work_keys_str_mv AT delphinedianaacar integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT wojciechwitkowski integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT magdalenawejda integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT ruifangwei integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT timdesmet integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT bertschepens integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT sieglindedecae integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT koensedeyn integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT hannaheeckhaut integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT dariafijalkowska integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT kennyroose integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT sandrinevanmarcke integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT annepoupon integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT dirkjochmans integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT xinzhang integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT ranaabdelnabi integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT carolinesfoo integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT birgitweynand integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT dirkreiter integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT nicocallewaert integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT hanremaut integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT johanneyts integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT xaviersaelens integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT sarahgerlo integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext
AT linosvandekerckhove integratingartificialintelligencebasedepitopepredictioninasarscov2antibodydiscoverypipelinecautioniswarrantedresearchincontext