Summary: | Let <i>G</i> be a graph with the adjacency matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> be the diagonal matrix of the degrees of <i>G</i>. Nikiforov first defined the matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, which shed new light on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and yielded some surprises. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>−</mo></mrow></semantics></math></inline-formula>adjacency energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>E</mi><msub><mi>A</mi><mi>α</mi></msub></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <i>G</i> is a new invariant that is calculated from the eigenvalues of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. In this work, by combining matrix theory and the graph structure properties, we provide some upper and lower bounds for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>E</mi><msub><mi>A</mi><mi>α</mi></msub></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in terms of graph parameters (the order <i>n</i>, the edge size <i>m</i>, etc.) and characterize the corresponding extremal graphs. In addition, we obtain some relations between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>E</mi><msub><mi>A</mi><mi>α</mi></msub></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and other energies such as the energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Some results can be applied to appropriately estimate the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-adjacency energy using some given graph parameters rather than by performing some tedious calculations.
|