Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model

This research manifesto has a comprehensive discussion of the global dynamics of an achievable discrete-time two predators and one prey Lotka–Volterra model in three dimensions, i.e., in the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inlin...

Full description

Bibliographic Details
Main Authors: Abdul Khaliq, Tarek F. Ibrahim, Abeer M. Alotaibi, Muhammad Shoaib, Mohammed Abd El-Moneam
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/21/4015
_version_ 1797467411493945344
author Abdul Khaliq
Tarek F. Ibrahim
Abeer M. Alotaibi
Muhammad Shoaib
Mohammed Abd El-Moneam
author_facet Abdul Khaliq
Tarek F. Ibrahim
Abeer M. Alotaibi
Muhammad Shoaib
Mohammed Abd El-Moneam
author_sort Abdul Khaliq
collection DOAJ
description This research manifesto has a comprehensive discussion of the global dynamics of an achievable discrete-time two predators and one prey Lotka–Volterra model in three dimensions, i.e., in the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>3</mn></msup></semantics></math></inline-formula>. In some assertive parametric circumstances, the discrete-time model has eight equilibrium points among which one is a special or unique positive equilibrium point. We have also investigated the local and global behavior of equilibrium points of an achievable three-dimensional discrete-time two predators and one prey Lotka–Volterra model. The conversion of a continuous-type model into its discrete counterpart model has been completed by adopting a dynamically consistent nonstandard difference scheme with the end goal that the equilibrium points are conserved in twin cases. The difficulty lies in how to find all fixed points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo>,</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>T</mi><mo>,</mo><mi>U</mi><mo>,</mo><mi>V</mi></mrow></semantics></math></inline-formula> and the Jacobian matrix and its characteristic polynomial at the unique positive fixed point. For that purpose, we use Mathematica software to find the equilibrium points and all of the Jacobian matrices at those equilibrium points. Moreover, we discuss boundedness conditions for every solution and prove the existence of a unique positive equilibrium point. We discuss the local stability of the obtained system about all of its equilibrium points. The discrete Lotka–Volterra model in three dimensions is given by system (3), where parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>ζ</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>ε</mi><mo>,</mo><mi>υ</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><mi>σ</mi><mo>,</mo><mi>ω</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula> and initial conditions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><msub><mi>y</mi><mn>0</mn></msub><mo>,</mo><msub><mi>z</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> are positive real numbers. Additionally, the rate of convergence of a solution that converges to a unique positive equilibrium point is discussed. To represent theoretical perceptions, some numerical debates are introduced, including phase portraits.
first_indexed 2024-03-09T18:53:15Z
format Article
id doaj.art-d632025ca3694c36b9358d44e54bad1c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T18:53:15Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-d632025ca3694c36b9358d44e54bad1c2023-11-24T05:43:35ZengMDPI AGMathematics2227-73902022-10-011021401510.3390/math10214015Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra ModelAbdul Khaliq0Tarek F. Ibrahim1Abeer M. Alotaibi2Muhammad Shoaib3Mohammed Abd El-Moneam4Department of Mathematics, Riphah International University, Lahore Campus, Lahore 54000, PakistanDepartment of Mathematics, Faculty of Sciences and Arts (Mahayel), King Khalid University, Abha 62529, Saudi ArabiaDepartment of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi ArabiaResearch and Development Department, AZ International Publishing House, Lahore 54000, PakistanDepartment of Mathematics, Faculty of Science, Jazan University, Jazan 45142, Saudi ArabiaThis research manifesto has a comprehensive discussion of the global dynamics of an achievable discrete-time two predators and one prey Lotka–Volterra model in three dimensions, i.e., in the space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>3</mn></msup></semantics></math></inline-formula>. In some assertive parametric circumstances, the discrete-time model has eight equilibrium points among which one is a special or unique positive equilibrium point. We have also investigated the local and global behavior of equilibrium points of an achievable three-dimensional discrete-time two predators and one prey Lotka–Volterra model. The conversion of a continuous-type model into its discrete counterpart model has been completed by adopting a dynamically consistent nonstandard difference scheme with the end goal that the equilibrium points are conserved in twin cases. The difficulty lies in how to find all fixed points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>O</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>Q</mi><mo>,</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>T</mi><mo>,</mo><mi>U</mi><mo>,</mo><mi>V</mi></mrow></semantics></math></inline-formula> and the Jacobian matrix and its characteristic polynomial at the unique positive fixed point. For that purpose, we use Mathematica software to find the equilibrium points and all of the Jacobian matrices at those equilibrium points. Moreover, we discuss boundedness conditions for every solution and prove the existence of a unique positive equilibrium point. We discuss the local stability of the obtained system about all of its equilibrium points. The discrete Lotka–Volterra model in three dimensions is given by system (3), where parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>ζ</mi><mo>,</mo><mi>η</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>ε</mi><mo>,</mo><mi>υ</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><mi>σ</mi><mo>,</mo><mi>ω</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula> and initial conditions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><msub><mi>y</mi><mn>0</mn></msub><mo>,</mo><msub><mi>z</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> are positive real numbers. Additionally, the rate of convergence of a solution that converges to a unique positive equilibrium point is discussed. To represent theoretical perceptions, some numerical debates are introduced, including phase portraits.https://www.mdpi.com/2227-7390/10/21/4015fixed pointsstabilitypredator-prey systemrate of convergenceglobal stabilityboundedness
spellingShingle Abdul Khaliq
Tarek F. Ibrahim
Abeer M. Alotaibi
Muhammad Shoaib
Mohammed Abd El-Moneam
Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model
Mathematics
fixed points
stability
predator-prey system
rate of convergence
global stability
boundedness
title Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model
title_full Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model
title_fullStr Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model
title_full_unstemmed Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model
title_short Dynamical Analysis of Discrete-Time Two-Predators One-Prey Lotka–Volterra Model
title_sort dynamical analysis of discrete time two predators one prey lotka volterra model
topic fixed points
stability
predator-prey system
rate of convergence
global stability
boundedness
url https://www.mdpi.com/2227-7390/10/21/4015
work_keys_str_mv AT abdulkhaliq dynamicalanalysisofdiscretetimetwopredatorsonepreylotkavolterramodel
AT tarekfibrahim dynamicalanalysisofdiscretetimetwopredatorsonepreylotkavolterramodel
AT abeermalotaibi dynamicalanalysisofdiscretetimetwopredatorsonepreylotkavolterramodel
AT muhammadshoaib dynamicalanalysisofdiscretetimetwopredatorsonepreylotkavolterramodel
AT mohammedabdelmoneam dynamicalanalysisofdiscretetimetwopredatorsonepreylotkavolterramodel