Optimal Scheduling of Power System Incorporating the Flexibility of Thermal Units

Due to the randomness, volatility and intermittent nature of wind power, power systems with significant wind penetration face serious “curtailment” problems. The flexibility of a power system is an important factor that affects the large-scale consumption of wind power. Based on...

Full description

Bibliographic Details
Main Authors: Tong Guo, Yajing Gao, Xiaojie Zhou, Yonggang Li, Jiaomin Liu
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/9/2195
Description
Summary:Due to the randomness, volatility and intermittent nature of wind power, power systems with significant wind penetration face serious “curtailment” problems. The flexibility of a power system is an important factor that affects the large-scale consumption of wind power. Based on this fact, this paper takes into account the economics and flexibility of the system, and proposes an optimal scheduling method that takes the flexibility of each thermal power unit into account. Firstly, a comprehensive evaluation index system of thermal power unit flexibility is designed by an analytic hierarchy process and entropy method. The system covers the technical indexes and economic characteristics of thermal power units and is able to quantitatively evaluate the different types of thermal power units in the system. Secondly, a multi-objective optimization scheduling model involving the overall flexibility of the unit and the total power generation cost is established. Finally, the correctness and effectiveness of the proposed indicators and models are verified by a case study.
ISSN:1996-1073