ANALISIS SPASIAL KEMISKINAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION: STUDI KASUS KABUPATEN PANDEGLANG DAN LEBAK

Poverty is the main problem both at the national and regional development.  Existing poverty alleviation programs have not paid attention to the spatial aspect. Thus the policies are often poorly targeted. This study aims to find spatial patterns of poverty in Pandeglang and Lebak districts. Geograp...

Full description

Bibliographic Details
Main Authors: S Sukanto, Bambang Juanda, Akhmad Fauzi, Sri Mulatsih
Format: Article
Language:English
Published: Diponegoro University 2019-11-01
Series:Tataloka
Subjects:
Online Access:https://ejournal2.undip.ac.id/index.php/tataloka/article/view/2322
_version_ 1828379087295479808
author S Sukanto
Bambang Juanda
Akhmad Fauzi
Sri Mulatsih
author_facet S Sukanto
Bambang Juanda
Akhmad Fauzi
Sri Mulatsih
author_sort S Sukanto
collection DOAJ
description Poverty is the main problem both at the national and regional development.  Existing poverty alleviation programs have not paid attention to the spatial aspect. Thus the policies are often poorly targeted. This study aims to find spatial patterns of poverty in Pandeglang and Lebak districts. Geographically weighted regression (GWR) is used to analyze the poverty data in 2016. Based on the analysis, positive spatial autocorrelation is found and clustered in 25 sub-districts. Net enrollment rates tend to reduce poverty in all sub-districts. Meanwhile, village funds, electricity, and roads tend to reduce poverty rates in more than 80% of sub-districts. Independent variables have a different response in each sub-district. Therefore, the poverty alleviation program of each sub-district is adjusting to its influencing factor.
first_indexed 2024-12-10T03:33:05Z
format Article
id doaj.art-d636140e521e46278ba49e7aa9081780
institution Directory Open Access Journal
issn 0852-7458
2356-0266
language English
last_indexed 2024-12-10T03:33:05Z
publishDate 2019-11-01
publisher Diponegoro University
record_format Article
series Tataloka
spelling doaj.art-d636140e521e46278ba49e7aa90817802022-12-22T02:03:46ZengDiponegoro UniversityTataloka0852-74582356-02662019-11-0121466967710.14710/tataloka.21.4.669-6771700ANALISIS SPASIAL KEMISKINAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION: STUDI KASUS KABUPATEN PANDEGLANG DAN LEBAKS Sukanto0Bambang Juanda1Akhmad Fauzi2Sri Mulatsih3Program Studi Ekonomi Pembangunan Fakultas Ekonomi, Universitas SriwijayaProgram Studi Ilmu Perencanaan Pembangunan Wilayah dan Perdesaan, Institut Pertanian BogorProgram Studi Ilmu Perencanaan Pembangunan Wilayah dan Perdesaan, Institut Pertanian BogorProgram Studi Ilmu Perencanaan Pembangunan Wilayah dan Perdesaan, Institut Pertanian BogorPoverty is the main problem both at the national and regional development.  Existing poverty alleviation programs have not paid attention to the spatial aspect. Thus the policies are often poorly targeted. This study aims to find spatial patterns of poverty in Pandeglang and Lebak districts. Geographically weighted regression (GWR) is used to analyze the poverty data in 2016. Based on the analysis, positive spatial autocorrelation is found and clustered in 25 sub-districts. Net enrollment rates tend to reduce poverty in all sub-districts. Meanwhile, village funds, electricity, and roads tend to reduce poverty rates in more than 80% of sub-districts. Independent variables have a different response in each sub-district. Therefore, the poverty alleviation program of each sub-district is adjusting to its influencing factor.https://ejournal2.undip.ac.id/index.php/tataloka/article/view/2322autocorrelation spatialgwrpovertysub-district
spellingShingle S Sukanto
Bambang Juanda
Akhmad Fauzi
Sri Mulatsih
ANALISIS SPASIAL KEMISKINAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION: STUDI KASUS KABUPATEN PANDEGLANG DAN LEBAK
Tataloka
autocorrelation spatial
gwr
poverty
sub-district
title ANALISIS SPASIAL KEMISKINAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION: STUDI KASUS KABUPATEN PANDEGLANG DAN LEBAK
title_full ANALISIS SPASIAL KEMISKINAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION: STUDI KASUS KABUPATEN PANDEGLANG DAN LEBAK
title_fullStr ANALISIS SPASIAL KEMISKINAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION: STUDI KASUS KABUPATEN PANDEGLANG DAN LEBAK
title_full_unstemmed ANALISIS SPASIAL KEMISKINAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION: STUDI KASUS KABUPATEN PANDEGLANG DAN LEBAK
title_short ANALISIS SPASIAL KEMISKINAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED REGRESSION: STUDI KASUS KABUPATEN PANDEGLANG DAN LEBAK
title_sort analisis spasial kemiskinan dengan pendekatan geographically weighted regression studi kasus kabupaten pandeglang dan lebak
topic autocorrelation spatial
gwr
poverty
sub-district
url https://ejournal2.undip.ac.id/index.php/tataloka/article/view/2322
work_keys_str_mv AT ssukanto analisisspasialkemiskinandenganpendekatangeographicallyweightedregressionstudikasuskabupatenpandeglangdanlebak
AT bambangjuanda analisisspasialkemiskinandenganpendekatangeographicallyweightedregressionstudikasuskabupatenpandeglangdanlebak
AT akhmadfauzi analisisspasialkemiskinandenganpendekatangeographicallyweightedregressionstudikasuskabupatenpandeglangdanlebak
AT srimulatsih analisisspasialkemiskinandenganpendekatangeographicallyweightedregressionstudikasuskabupatenpandeglangdanlebak