Balanced Charging Algorithm for CHB in an EV Powertrain

The scientific literature acknowledges cascaded H-bridge (CHB) converters as a viable alternative to two-level inverters in electric vehicle (EV) powertrain applications. In the context of an electric vehicle engine connected to a DC charger, this study introduces a state of charge (SOC)-governed me...

Full description

Bibliographic Details
Main Authors: Filippo Gemma, Giulia Tresca, Andrea Formentini, Pericle Zanchetta
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/14/5565
Description
Summary:The scientific literature acknowledges cascaded H-bridge (CHB) converters as a viable alternative to two-level inverters in electric vehicle (EV) powertrain applications. In the context of an electric vehicle engine connected to a DC charger, this study introduces a state of charge (SOC)-governed method for charging li-ion battery modules using a cascaded H-bridge converter. The key strength of this algorithm lies in its ability to achieve balanced charging of battery modules across all three-phase submodules while simultaneously controlling the DC charger, eliminating the need for an additional intermediate converter. Moreover, the algorithm is highly customizable, allowing adaptation to various configurations involving different numbers of submodules per phase. Simulative and experimental results are presented to demonstrate the effectiveness of the proposed charging algorithm, validating its practical application.
ISSN:1996-1073