A Review: Recent Progress on Evaluation of Flowability and Floodability of Powder
Recent studies evaluating the flowability and floodability of cohesive powder under conditions of consolidation, mechanical force, vibrating force, fluid force, and floodability are reviewed. The ball indentation test is an effective method for evaluating the flowability of a small amount of cohesiv...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hosokawa Powder Technology Foundation
2018-03-01
|
Series: | KONA Powder and Particle Journal |
Subjects: | |
Online Access: | https://www.jstage.jst.go.jp/article/kona/36/0/36_2019002/_html/-char/en |
Summary: | Recent studies evaluating the flowability and floodability of cohesive powder under conditions of consolidation, mechanical force, vibrating force, fluid force, and floodability are reviewed. The ball indentation test is an effective method for evaluating the flowability of a small amount of cohesive powder at very low stress under consolidation conditions. The environmental conditions such as temperature and humidity play an important role in the flow of cohesive powder. With regard to cohesive powder flowing under mechanical force, the FT4 powder rheometer can evaluate the powder flowability using the total energy which is related to the shear stress on the impeller blade. The vibrating capillary method and the vibrating shear tube method are effective for the measurement of the flowability of strongly cohesive powder. The test using powder discharge by air flow can assess the flowability of cohesive powder which Carr’s flowability index is an equivalent level by using mass flow rate and interstitial air pressure. Finally, the flushing of cohesive powder occurs when the interstitial air pressure and the void fraction are high. The pressure difference between the interstitial air pressure and the outside of an orifice are the dominant factors in the spouting of powder. |
---|---|
ISSN: | 0288-4534 2187-5537 |