Meteorological effects on trace element solubility in Mississippi coastal wetlands
Trace elements (TEs) vary in toxicity and should be closely monitored to manage their accumulation in marine organisms, which may pass on to the food web. This study utilizes the National Oceanic and Atmospheric Administration’s (NOAA), Data Integration Visualization Exploration and Reporting (DIVER...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2019-01-01
|
Series: | AIMS Environmental Science |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/environsci.2019.1.1/fulltext.html |
_version_ | 1818191403307499520 |
---|---|
author | Joseph A. Kazery Dayakar P. Nittala H. Anwar Ahmad |
author_facet | Joseph A. Kazery Dayakar P. Nittala H. Anwar Ahmad |
author_sort | Joseph A. Kazery |
collection | DOAJ |
description | Trace elements (TEs) vary in toxicity and should be closely monitored to manage their accumulation in marine organisms, which may pass on to the food web. This study utilizes the National Oceanic and Atmospheric Administration’s (NOAA), Data Integration Visualization Exploration and Reporting (DIVER), National Centers for Environmental Information (NCEI), and Drought Monitor Systems to acquire arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), and zinc (Zn) concentrations in marsh soils along the Mississippi Gulf Coast area using the precipitation and drought data for the two sampling periods in 2010 and 2011. Results revealed that Zn had a significantly high correlation (r = 0.80 and <em>p</em> < 0.05) between soil concentrations and daily rainfall amounts, whereas Pb concentrations in soil were shown to occur after heavy storms. There was also significant variation between the months for Cd, Cr, and Pb, over the sampling periods. Arsenic remains relatively stable and statistically similar in the sediment averaging 21.09 µg/kg. Coastal soils were significantly higher in Cd and Cr concentrations in 2010 (28.89 µg/kg for Cd and 28.91 µg/kg for Cr) compared to 2011 (both 9.16 µg/kg). The trace elements, Cd and Cr showed negative correlation (r = −0.63 and −0.27) to increasing drought intensities. Most of these responses can be explained by a redox process where TEs were sequestered or released as solids and subsequently becomes saturated or dried out. It was observed that soils in Mississippi’s Gulf Coast study areas have the ability to be a sink or reservoir during various weather conditions thereby entrapping or releasing TEs, which becomes more available to organisms. |
first_indexed | 2024-12-12T00:14:03Z |
format | Article |
id | doaj.art-d65da10b837d4dbb9523850ff1f31007 |
institution | Directory Open Access Journal |
issn | 2372-0344 2372-0352 |
language | English |
last_indexed | 2024-12-12T00:14:03Z |
publishDate | 2019-01-01 |
publisher | AIMS Press |
record_format | Article |
series | AIMS Environmental Science |
spelling | doaj.art-d65da10b837d4dbb9523850ff1f310072022-12-22T00:44:54ZengAIMS PressAIMS Environmental Science2372-03442372-03522019-01-016111310.3934/environsci.2019.1.1Meteorological effects on trace element solubility in Mississippi coastal wetlandsJoseph A. Kazery0Dayakar P. Nittala1H. Anwar Ahmad2Department of Biology/Environmental Science, College of Science, Engineering and Technology, Jackson State University, 1400 John R Lynch St., Jackson, MS 39217, USADepartment of Biology/Environmental Science, College of Science, Engineering and Technology, Jackson State University, 1400 John R Lynch St., Jackson, MS 39217, USADepartment of Biology/Environmental Science, College of Science, Engineering and Technology, Jackson State University, 1400 John R Lynch St., Jackson, MS 39217, USATrace elements (TEs) vary in toxicity and should be closely monitored to manage their accumulation in marine organisms, which may pass on to the food web. This study utilizes the National Oceanic and Atmospheric Administration’s (NOAA), Data Integration Visualization Exploration and Reporting (DIVER), National Centers for Environmental Information (NCEI), and Drought Monitor Systems to acquire arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), and zinc (Zn) concentrations in marsh soils along the Mississippi Gulf Coast area using the precipitation and drought data for the two sampling periods in 2010 and 2011. Results revealed that Zn had a significantly high correlation (r = 0.80 and <em>p</em> < 0.05) between soil concentrations and daily rainfall amounts, whereas Pb concentrations in soil were shown to occur after heavy storms. There was also significant variation between the months for Cd, Cr, and Pb, over the sampling periods. Arsenic remains relatively stable and statistically similar in the sediment averaging 21.09 µg/kg. Coastal soils were significantly higher in Cd and Cr concentrations in 2010 (28.89 µg/kg for Cd and 28.91 µg/kg for Cr) compared to 2011 (both 9.16 µg/kg). The trace elements, Cd and Cr showed negative correlation (r = −0.63 and −0.27) to increasing drought intensities. Most of these responses can be explained by a redox process where TEs were sequestered or released as solids and subsequently becomes saturated or dried out. It was observed that soils in Mississippi’s Gulf Coast study areas have the ability to be a sink or reservoir during various weather conditions thereby entrapping or releasing TEs, which becomes more available to organisms.https://www.aimspress.com/article/10.3934/environsci.2019.1.1/fulltext.htmlestuary| trace elements| coastal wetlands| Mississippi gulf coast| weather |
spellingShingle | Joseph A. Kazery Dayakar P. Nittala H. Anwar Ahmad Meteorological effects on trace element solubility in Mississippi coastal wetlands AIMS Environmental Science estuary| trace elements| coastal wetlands| Mississippi gulf coast| weather |
title | Meteorological effects on trace element solubility in Mississippi coastal wetlands |
title_full | Meteorological effects on trace element solubility in Mississippi coastal wetlands |
title_fullStr | Meteorological effects on trace element solubility in Mississippi coastal wetlands |
title_full_unstemmed | Meteorological effects on trace element solubility in Mississippi coastal wetlands |
title_short | Meteorological effects on trace element solubility in Mississippi coastal wetlands |
title_sort | meteorological effects on trace element solubility in mississippi coastal wetlands |
topic | estuary| trace elements| coastal wetlands| Mississippi gulf coast| weather |
url | https://www.aimspress.com/article/10.3934/environsci.2019.1.1/fulltext.html |
work_keys_str_mv | AT josephakazery meteorologicaleffectsontraceelementsolubilityinmississippicoastalwetlands AT dayakarpnittala meteorologicaleffectsontraceelementsolubilityinmississippicoastalwetlands AT hanwarahmad meteorologicaleffectsontraceelementsolubilityinmississippicoastalwetlands |