Photonic Microwave Distance Interferometry Using a Mode-Locked Laser with Systematic Error Correction

We report an absolute interferometer configured with a 1 GHz microwave source photonically synthesized from a fiber mode-locked laser of a 100 MHz pulse repetition rate. Special attention is paid to the identification of the repeatable systematic error with its subsequent suppression by means of pas...

Full description

Bibliographic Details
Main Authors: Wooram Kim, Haijin Fu, Keunwoo Lee, Seongheum Han, Yoon-Soo Jang, Seung-Woo Kim
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/21/7649
Description
Summary:We report an absolute interferometer configured with a 1 GHz microwave source photonically synthesized from a fiber mode-locked laser of a 100 MHz pulse repetition rate. Special attention is paid to the identification of the repeatable systematic error with its subsequent suppression by means of passive compensation as well as active correction. Experimental results show that passive compensation permits the measurement error to be less than 7.8 μm (1 σ) over a 2 m range, which further reduces to 3.5 μm (1 σ) by active correction as it is limited ultimately by the phase-resolving power of the phasemeter employed in this study. With precise absolute distance ranging capability, the proposed scheme of the photonic microwave interferometer is expected to replace conventional incremental-type interferometers in diverse long-distance measurement applications, particularly for large machine axis control, precision geodetic surveying and inter-satellite ranging in space.
ISSN:2076-3417