The 750 GeV diphoton excess as a first light on supersymmetry breaking

One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, t...

Full description

Bibliographic Details
Main Authors: J.A. Casas, J.R. Espinosa, J.M. Moreno
Format: Article
Language:English
Published: Elsevier 2016-08-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269316302179
Description
Summary:One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Γ≃45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.
ISSN:0370-2693
1873-2445