Development of a method for securing the operator's situation awareness from manipulation attacks on NPP process data

According to the defense-in-depth concept, not only a preventive strategy but also an integrated cyberattack response strategy for NPPs should be established. However, there are limitations in terms of responding to penetrations, and the existing EOPs are insufficient for responding to intentional d...

Full description

Bibliographic Details
Main Authors: Chanyoung Lee, Jae Gu Song, Cheol Kwon Lee, Poong Hyun Seong
Format: Article
Language:English
Published: Elsevier 2022-06-01
Series:Nuclear Engineering and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S173857332100680X
Description
Summary:According to the defense-in-depth concept, not only a preventive strategy but also an integrated cyberattack response strategy for NPPs should be established. However, there are limitations in terms of responding to penetrations, and the existing EOPs are insufficient for responding to intentional disruptions. In this study, we focus on manipulative attacks on process data. Based on an analysis of the related attack vectors and possible attack scenarios, we adopt the Kalman filter to detect process anomalies that can be caused by manipulations of process data. To compensate for these manipulations and secure MCR operators' situational awareness, we modify the Kalman filter such that it can filter out the effects of the manipulations adaptively. A case study was conducted using a hardware-in-the-loop system. The results indicated that the developed method can be used to verify whether the displayed safety-related state data are reliable and to implement the required safety response actions.
ISSN:1738-5733