Summary: | The de Sitter spacetime is a maximally symmetric spacetime. It is one of the vacuum solutions to Einstein equations with a cosmological constant. It is the solution with a positive cosmological constant and describes a universe undergoing accelerated expansion. Among the possible signs for a cosmological constant, this solution is relevant for primordial and late-time cosmology. In the case of a zero cosmological constant, studies on the representations of its isometry group have led to a broader understanding of particle physics. The isometry group of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>-dimensional de Sitter is the group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>O</mi><mo stretchy="false">(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, whose representations are well known. Given this insight, what can we learn about the elementary degrees of freedom in a four dimensional de Sitter universe by exploring how the unitary irreducible representations of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>O</mi><mo stretchy="false">(</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> present themselves in cosmological setups? This article aims to summarize recent advances along this line that benefit towards a broader understanding of quantum field theory and holography at different signs of the cosmological constant. Particular focus is given to the manifestation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>O</mi><mo stretchy="false">(</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> representations at the late-time boundary of de Sitter. The discussion is concluded by pointing towards future questions at the late-time boundary and the static patch with a focus on the representations.
|