Understanding Cell Model Characteristics—RNA Expression Profiling in Primary and Immortalized Human Mesothelial Cells, and in Human Vein and Microvascular Endothelial Cells

In vitro studies are essential in pre-clinical research. While choice of cell lines is often driven by handling and cost-effectiveness, in-depth knowledge on specific characteristics is scant. Mesothelial cells, which interact with endothelial cells, are widely used in research, including cancer and...

Full description

Bibliographic Details
Main Authors: Iva Marinovic, Maria Bartosova, Rebecca Herzog, Juan Manuel Sacnun, Conghui Zhang, Robin Hoogenboom, Markus Unterwurzacher, Thilo Hackert, Aurelio A. Teleman, Klaus Kratochwill, Claus Peter Schmitt
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/11/19/3133
Description
Summary:In vitro studies are essential in pre-clinical research. While choice of cell lines is often driven by handling and cost-effectiveness, in-depth knowledge on specific characteristics is scant. Mesothelial cells, which interact with endothelial cells, are widely used in research, including cancer and drug development, but have not been comprehensively profiled. We therefore performed RNA sequencing of polarized, primary peritoneal (HPMC) and immortalized pleural mesothelial cells (MeT-5A), and compared them to endothelial cells from umbilical vein (HUVEC) and cardiac capillaries (HCMEC). Seventy-seven per cent of 12,760 genes were shared between the 4 cell lines, 1003 were mesothelial and 969 were endothelial cell specific. The transcripts reflected major differences between HPMC and MeT-5A in DNA-related processes, extracellular matrix, migration, proliferation, adhesion, transport, growth factor- and immune response, and between HUVEC and HCMEC in DNA replication, extracellular matrix and adhesion organization. Highly variable shared genes were related to six clusters, cell tissue origin and immortalization, but also cell migration capacity, cell adhesion, regulation of angiogenesis and response to hypoxia. Distinct, cell type specific biological processes were further described by cellular component-, molecular function- and Reactome pathway analyses. We provide crucial information on specific features of the most frequently used mesothelial and endothelial cell lines, essential for appropriate use.
ISSN:2073-4409