Sparse Reconstruction Based Robust Near-Field Source Localization Algorithm

Non-Gaussian impulsive noise widely exists in the real world, this paper takes the α-stable distribution as the mathematical model of non-Gaussian impulsive noise and works on the joint direction-of-arrival (DOA) and range estimation problem of near-field signals in impulsive noise environment. Sinc...

Full description

Bibliographic Details
Main Authors: Sen Li, Bing Li, Bin Lin, Xiaofang Tang, Rongxi He
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/18/4/1066
Description
Summary:Non-Gaussian impulsive noise widely exists in the real world, this paper takes the α-stable distribution as the mathematical model of non-Gaussian impulsive noise and works on the joint direction-of-arrival (DOA) and range estimation problem of near-field signals in impulsive noise environment. Since the conventional algorithms based on the classical second order correlation statistics degenerate severely in the impulsive noise environment, this paper adopts two robust correlations, the fractional lower order correlation (FLOC) and the nonlinear transform correlation (NTC), and presents two related near-field localization algorithms. In our proposed algorithms, by exploring the symmetrical characteristic of the array, we construct the robust far-field approximate correlation vector in relation with the DOA only, which allows for bearing estimation based on the sparse reconstruction. With the estimated bearing, the range can consequently be obtained by the sparse reconstruction of the output of a virtual array. The proposed algorithms have the merits of good noise suppression ability, and their effectiveness is demonstrated by the computer simulation results.
ISSN:1424-8220