Fractional Integral Inequalities of Hermite–Hadamard Type for (<i>h</i>,<i>g</i>;<i>m</i>)-Convex Functions with Extended Mittag-Leffler Function

Several fractional integral inequalities of the Hermite–Hadamard type are presented for the class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>h</mi><mo>,&...

Full description

Bibliographic Details
Main Author: Maja Andrić
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/6/301
Description
Summary:Several fractional integral inequalities of the Hermite–Hadamard type are presented for the class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>h</mi><mo>,</mo><mi>g</mi><mo>;</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula>-convex functions. Applied fractional integral operators contain extended generalized Mittag-Leffler functions as their kernel, thus enabling new fractional integral inequalities that extend and generalize the known results. As an application, the upper bounds of fractional integral operators for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>h</mi><mo>,</mo><mi>g</mi><mo>;</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula>-convex functions are given.
ISSN:2504-3110