Thin-layer drying characteristics, modeling and quality attributes of tomato slices dried with infrared radiation heating

An Infrared dryer was used to examine the drying of tomato slices. In this investigation, the influence of infrared radiation (IR) on the rate of drying, physical quality, energy combustion of tomato was estimated at three different levels of intensity at 0.15, 0.20, and 0.35 W/cm² under different a...

Full description

Bibliographic Details
Main Authors: Hany S. El-Mesery, Reham M. Kamel, W. G. Alshaer
Format: Article
Language:English
Published: Universidade Federal de Uberlândia 2022-08-01
Series:Bioscience Journal
Subjects:
Online Access:https://seer.ufu.br/index.php/biosciencejournal/article/view/42303
Description
Summary:An Infrared dryer was used to examine the drying of tomato slices. In this investigation, the influence of infrared radiation (IR) on the rate of drying, physical quality, energy combustion of tomato was estimated at three different levels of intensity at 0.15, 0.20, and 0.35 W/cm² under different air flows of 0.5, 1, and 1.5 m/s. Tomato slices were dried with an initial moisture content of 19.7 to 0.17 g water/g dry solids by infrared drying. The moisture content and drying rates are found to be dramatically affected by infrared density. An increase in the drying rate and a decrease in the drying period occurred with increasing infrared intensity. A decrease in energy consumption was detected with the increase of radiation intensity. The results clarified that the shrinkage ratio increased with increasing infrared intensity. The rehydration ratio raised with the increase in radiation intensity. The change in the colour difference of dried slices increased with an increase in radiation intensity. The models were in comparison using (R²) coefficient of determination, modelling efficiency (EF), and (χ²) reduced chi-square. Midilli model was fit for simulation of all drying conditions and could be used to estimate tomato moisture content at any time during the infrared drying process.
ISSN:1981-3163