Behavior of the main parameters of the Genetic Algorithm for Flow Shop Scheduling Problems

There are different suggested values to adapt the basic parameters of a Genetic Algorithm, however, these values may not be the optimal for all kinds of applications. The following research presents a metaheuristic based on a Genetic Algorithm to solve problems of type Flow Shop Scheduling wi...

Full description

Bibliographic Details
Main Authors: Yunior César Fonseca Reyna, Yailen Martínez Jiménez, Ángel Enrique Figueredo León, Luis Alberto Pernía Nieves
Format: Article
Language:Spanish
Published: Universidad de Ciencias Informáticas 2014-01-01
Series:Revista Cubana de Ciencias Informáticas
Subjects:
Online Access:http://rcci.uci.cu/index.php?journal=rcci&page=article&op=view&path[]=590&path[]=257
_version_ 1828808931311353856
author Yunior César Fonseca Reyna
Yailen Martínez Jiménez
Ángel Enrique Figueredo León
Luis Alberto Pernía Nieves
author_facet Yunior César Fonseca Reyna
Yailen Martínez Jiménez
Ángel Enrique Figueredo León
Luis Alberto Pernía Nieves
author_sort Yunior César Fonseca Reyna
collection DOAJ
description There are different suggested values to adapt the basic parameters of a Genetic Algorithm, however, these values may not be the optimal for all kinds of applications. The following research presents a metaheuristic based on a Genetic Algorithm to solve problems of type Flow Shop Scheduling with the objective of minimizing the completion time of all jobs, known in literature as makespan or Cmax. This problem is typical of combinatorial optimization and can be found in manufacturing environment, where there are conventional machines-tools and different types of pieces which share the same route. A set of crossover and selection operators are implemented methods for the pro posed Genetic Algorithm once its main factors are calibrated, the size of the population, number of generations, mutation and crossover factors, statistical study is performed in order to determine the combinations of these parameters that has a greater influence. Finally, the combination of parameters whit the best performance is tested with problems of different levels of complexity in order to obtain satisfactory results in terms of solutions quality.
first_indexed 2024-12-12T08:48:18Z
format Article
id doaj.art-d69ec848715646539ed199803bc6aa8e
institution Directory Open Access Journal
issn 1994-1536
2227-1899
language Spanish
last_indexed 2024-12-12T08:48:18Z
publishDate 2014-01-01
publisher Universidad de Ciencias Informáticas
record_format Article
series Revista Cubana de Ciencias Informáticas
spelling doaj.art-d69ec848715646539ed199803bc6aa8e2022-12-22T00:30:21ZspaUniversidad de Ciencias InformáticasRevista Cubana de Ciencias Informáticas1994-15362227-18992014-01-018199111Behavior of the main parameters of the Genetic Algorithm for Flow Shop Scheduling ProblemsYunior César Fonseca Reyna0Yailen Martínez Jiménez1Ángel Enrique Figueredo León2Luis Alberto Pernía Nieves3Departamento de Informática. Universidad de Granma, km 18 ½, Carretera a Manzanillo, Bayamo, Granma, CubaDepartamento de Ciencia de la Computación. Universidad Central “Marta Abreu” de las Villas, Carretera a Camajuaní, km 5 ½, Santa Clara, Villa Clara, CubaDepartamento de Informática. Universidad de Granma, km 18 ½, Carretera a Manzanillo, Bayamo, Granma, CubaDepartamento de Informática. Universidad de Granma, km 18 ½, Carretera a Manzanillo, Bayamo, Granma, CubaThere are different suggested values to adapt the basic parameters of a Genetic Algorithm, however, these values may not be the optimal for all kinds of applications. The following research presents a metaheuristic based on a Genetic Algorithm to solve problems of type Flow Shop Scheduling with the objective of minimizing the completion time of all jobs, known in literature as makespan or Cmax. This problem is typical of combinatorial optimization and can be found in manufacturing environment, where there are conventional machines-tools and different types of pieces which share the same route. A set of crossover and selection operators are implemented methods for the pro posed Genetic Algorithm once its main factors are calibrated, the size of the population, number of generations, mutation and crossover factors, statistical study is performed in order to determine the combinations of these parameters that has a greater influence. Finally, the combination of parameters whit the best performance is tested with problems of different levels of complexity in order to obtain satisfactory results in terms of solutions quality.http://rcci.uci.cu/index.php?journal=rcci&page=article&op=view&path[]=590&path[]=257Genetic algorithmsflow shopmakespanoptimizationscheduling
spellingShingle Yunior César Fonseca Reyna
Yailen Martínez Jiménez
Ángel Enrique Figueredo León
Luis Alberto Pernía Nieves
Behavior of the main parameters of the Genetic Algorithm for Flow Shop Scheduling Problems
Revista Cubana de Ciencias Informáticas
Genetic algorithms
flow shop
makespan
optimization
scheduling
title Behavior of the main parameters of the Genetic Algorithm for Flow Shop Scheduling Problems
title_full Behavior of the main parameters of the Genetic Algorithm for Flow Shop Scheduling Problems
title_fullStr Behavior of the main parameters of the Genetic Algorithm for Flow Shop Scheduling Problems
title_full_unstemmed Behavior of the main parameters of the Genetic Algorithm for Flow Shop Scheduling Problems
title_short Behavior of the main parameters of the Genetic Algorithm for Flow Shop Scheduling Problems
title_sort behavior of the main parameters of the genetic algorithm for flow shop scheduling problems
topic Genetic algorithms
flow shop
makespan
optimization
scheduling
url http://rcci.uci.cu/index.php?journal=rcci&page=article&op=view&path[]=590&path[]=257
work_keys_str_mv AT yuniorcesarfonsecareyna behaviorofthemainparametersofthegeneticalgorithmforflowshopschedulingproblems
AT yailenmartinezjimenez behaviorofthemainparametersofthegeneticalgorithmforflowshopschedulingproblems
AT angelenriquefigueredoleon behaviorofthemainparametersofthegeneticalgorithmforflowshopschedulingproblems
AT luisalbertopernianieves behaviorofthemainparametersofthegeneticalgorithmforflowshopschedulingproblems