Defocused point spread function of asymmetrically apodized optical imaging systems with slit apertures

In the presence of defocusing, the PSF of an optical imaging system with asymmetric apodization have been investigated analytically. The asymmetry in the PSF has been observed to increase with edge strip width (b) of the slit aperture and further improved by defect of focus in the image plane, permi...

Full description

Bibliographic Details
Main Authors: Andra Naresh Kumar Reddy, Dasari Karuna Sagar
Format: Article
Language:English
Published: Samara National Research University 2016-09-01
Series:Journal of Biomedical Photonics & Engineering
Subjects:
Online Access:http://jbpe.ssau.ru/index.php/JBPE/article/view/3046
Description
Summary:In the presence of defocusing, the PSF of an optical imaging system with asymmetric apodization have been investigated analytically. The asymmetry in the PSF has been observed to increase with edge strip width (b) of the slit aperture and further improved by defect of focus in the image plane, permits to achieve a significant improvement in side-lobe suppression. The proposed analytical model of pupil function considers these effects and formulates a space-variant PSF is obtained by employing asymmetric apodization. The optimum values for asymmetric apodization controlling parameter (b) and defocusing parameter (Y) at which results in smoothing the central peak shape and reducing optical side-lobes intensity on one side of the Asymmetric PSF termed as ‘good’ side at the cost of worsening its counterpart known as ‘bad side’ with which renders the resolution of apodized optical imaging systems. In order to simplify the proposed analytical design an efficient method is derived and evaluated.
ISSN:2411-2844