Summary: | Abstract Recently, new types of base editors, C-to-G base editors (CGBEs), that enable cytosine transversions that are unachievable with cytosine base editors (CBEs) and adenosine base editors (ABEs), have been developed in human cells. However, despite their importance in crop genome editing, the efficacy of CGBEs has not yet been extensively evaluated. In our study, based on the previously reported plant-compatible CBE and human CGBE, we demonstrated that our monocot plant-compatible CGBEs (PcCGBEs) enable cytosine transversions (C-to-G) in rice protoplasts. For all targets tested, PcCGBEs (monocot plant-compatible CGBEs) appeared to have substantial levels of C-to-G editing activity. PcCGBE showed a much higher C-to-G base editing activity and C-to-G specificity among C-to-D conversions than the mini-version of PcCGBE. Our demonstration of PcCGBE could provide a platform for the further development of enhanced CGBEs for reliable application as a new crop breeding technology.
|