Control Charts for Joint Monitoring of the Lognormal Mean and Standard Deviation

The Shewhart <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>X</mi><mo>¯</mo></mover></semantics></math></inline-formula>- and <i>S</i>-char...

Full description

Bibliographic Details
Main Author: Wei-Heng Huang
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/4/549
_version_ 1797539918561411072
author Wei-Heng Huang
author_facet Wei-Heng Huang
author_sort Wei-Heng Huang
collection DOAJ
description The Shewhart <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>X</mi><mo>¯</mo></mover></semantics></math></inline-formula>- and <i>S</i>-charts are most commonly used for monitoring the process mean and variability based on the assumption of normality. However, many process distributions may follow a positively skewed distribution, such as the lognormal distribution. In this study, we discuss the construction of three combined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>X</mi><mo>¯</mo></mover></semantics></math></inline-formula>- and <i>S</i>-charts for jointly monitoring the lognormal mean and the standard deviation. The simulation results show that the combined lognormal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>X</mi><mo>¯</mo></mover></semantics></math></inline-formula>- and <i>S</i>-charts are more effective when the lognormal distribution is more skewed. A real example is used to demonstrate how the combined lognormal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>X</mi><mo>¯</mo></mover></semantics></math></inline-formula>- and <i>S</i>-charts can be applied in practice.
first_indexed 2024-03-10T12:52:38Z
format Article
id doaj.art-d6ad318de9f14dd0bf313fcd9d715fb8
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T12:52:38Z
publishDate 2021-03-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-d6ad318de9f14dd0bf313fcd9d715fb82023-11-21T12:11:57ZengMDPI AGSymmetry2073-89942021-03-0113454910.3390/sym13040549Control Charts for Joint Monitoring of the Lognormal Mean and Standard DeviationWei-Heng Huang0Department of Statistics, Feng Chia University, Taichung 40724, TaiwanThe Shewhart <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>X</mi><mo>¯</mo></mover></semantics></math></inline-formula>- and <i>S</i>-charts are most commonly used for monitoring the process mean and variability based on the assumption of normality. However, many process distributions may follow a positively skewed distribution, such as the lognormal distribution. In this study, we discuss the construction of three combined <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>X</mi><mo>¯</mo></mover></semantics></math></inline-formula>- and <i>S</i>-charts for jointly monitoring the lognormal mean and the standard deviation. The simulation results show that the combined lognormal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>X</mi><mo>¯</mo></mover></semantics></math></inline-formula>- and <i>S</i>-charts are more effective when the lognormal distribution is more skewed. A real example is used to demonstrate how the combined lognormal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mi>X</mi><mo>¯</mo></mover></semantics></math></inline-formula>- and <i>S</i>-charts can be applied in practice.https://www.mdpi.com/2073-8994/13/4/549average run lengthlognormal distributionphase II monitoringS-chart<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm900" display="block"> <mml:semantics> <mml:mover> <mml:mi>X</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:semantics> </mml:math> </inline-formula></named-content>-chart
spellingShingle Wei-Heng Huang
Control Charts for Joint Monitoring of the Lognormal Mean and Standard Deviation
Symmetry
average run length
lognormal distribution
phase II monitoring
S-chart
<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm900" display="block"> <mml:semantics> <mml:mover> <mml:mi>X</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:semantics> </mml:math> </inline-formula></named-content>-chart
title Control Charts for Joint Monitoring of the Lognormal Mean and Standard Deviation
title_full Control Charts for Joint Monitoring of the Lognormal Mean and Standard Deviation
title_fullStr Control Charts for Joint Monitoring of the Lognormal Mean and Standard Deviation
title_full_unstemmed Control Charts for Joint Monitoring of the Lognormal Mean and Standard Deviation
title_short Control Charts for Joint Monitoring of the Lognormal Mean and Standard Deviation
title_sort control charts for joint monitoring of the lognormal mean and standard deviation
topic average run length
lognormal distribution
phase II monitoring
S-chart
<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm900" display="block"> <mml:semantics> <mml:mover> <mml:mi>X</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:semantics> </mml:math> </inline-formula></named-content>-chart
url https://www.mdpi.com/2073-8994/13/4/549
work_keys_str_mv AT weihenghuang controlchartsforjointmonitoringofthelognormalmeanandstandarddeviation