The Hankel Determinants from a Singularly Perturbed Jacobi Weight

We study the Hankel determinant generated by a singularly perturbed Jacobi weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>x</mi&...

Full description

Bibliographic Details
Main Authors: Pengju Han, Yang Chen
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/22/2978
_version_ 1827676189005709312
author Pengju Han
Yang Chen
author_facet Pengju Han
Yang Chen
author_sort Pengju Han
collection DOAJ
description We study the Hankel determinant generated by a singularly perturbed Jacobi weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mi>α</mi></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo></mrow><mi>β</mi></msup><msup><mi mathvariant="normal">e</mi><mrow><mo>−</mo><mfrac><mi>s</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mi>x</mi><mo>∈</mo><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mi>α</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mi>β</mi><mo>></mo><mn>0</mn><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mi>s</mi><mo>≥</mo><mn>0</mn><mo>.</mo></mrow></semantics></math></inline-formula> If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, it is reduced to the classical Jacobi weight. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, the factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">e</mi><mrow><mo>−</mo><mfrac><mi>s</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></mfrac></mrow></msup></semantics></math></inline-formula> induces an infinitely strong zero at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. For the finite <i>n</i> case, we obtain four auxiliary quantities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>r</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>r</mi><mo>˜</mo></mover><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> by using the ladder operator approach. We show that the recurrence coefficients are expressed in terms of the four auxiliary quantities with the aid of the compatibility conditions. Furthermore, we derive a shifted Jimbo–Miwa–Okamoto <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-function of a particular Painlevé V for the logarithmic derivative of the Hankel determinant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. By variable substitution and some complicated calculations, we show that the quantity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> satisfies the four Painlevé equations. For the large <i>n</i> case, we show that, under a double scaling, where <i>n</i> tends to <i>∞</i> and <i>s</i> tends to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>0</mn><mo>+</mo></msup></semantics></math></inline-formula>, such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>:</mo><mo>=</mo><msup><mi>n</mi><mn>2</mn></msup><mi>s</mi></mrow></semantics></math></inline-formula> is finite, the scaled Hankel determinant can be expressed by a particular <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mrow><mi>I</mi><mi>I</mi><msup><mi>I</mi><mo>′</mo></msup></mrow></msub></semantics></math></inline-formula>.
first_indexed 2024-03-10T05:18:15Z
format Article
id doaj.art-d6b7b74391b445a7b9ac56a998206092
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T05:18:15Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-d6b7b74391b445a7b9ac56a9982060922023-11-23T00:16:03ZengMDPI AGMathematics2227-73902021-11-01922297810.3390/math9222978The Hankel Determinants from a Singularly Perturbed Jacobi WeightPengju Han0Yang Chen1College of Science, Huazhong Agricultural University, Wuhan 430070, ChinaDepartment of Mathematics, Faculty of Science and Technology, University of Macau, Macau 999078, ChinaWe study the Hankel determinant generated by a singularly perturbed Jacobi weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mi>α</mi></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo></mrow><mi>β</mi></msup><msup><mi mathvariant="normal">e</mi><mrow><mo>−</mo><mfrac><mi>s</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mi>x</mi><mo>∈</mo><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mi>α</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mi>β</mi><mo>></mo><mn>0</mn><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><mi>s</mi><mo>≥</mo><mn>0</mn><mo>.</mo></mrow></semantics></math></inline-formula> If <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, it is reduced to the classical Jacobi weight. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, the factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">e</mi><mrow><mo>−</mo><mfrac><mi>s</mi><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></mfrac></mrow></msup></semantics></math></inline-formula> induces an infinitely strong zero at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. For the finite <i>n</i> case, we obtain four auxiliary quantities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>r</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>r</mi><mo>˜</mo></mover><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> by using the ladder operator approach. We show that the recurrence coefficients are expressed in terms of the four auxiliary quantities with the aid of the compatibility conditions. Furthermore, we derive a shifted Jimbo–Miwa–Okamoto <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula>-function of a particular Painlevé V for the logarithmic derivative of the Hankel determinant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. By variable substitution and some complicated calculations, we show that the quantity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> satisfies the four Painlevé equations. For the large <i>n</i> case, we show that, under a double scaling, where <i>n</i> tends to <i>∞</i> and <i>s</i> tends to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>0</mn><mo>+</mo></msup></semantics></math></inline-formula>, such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>:</mo><mo>=</mo><msup><mi>n</mi><mn>2</mn></msup><mi>s</mi></mrow></semantics></math></inline-formula> is finite, the scaled Hankel determinant can be expressed by a particular <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mrow><mi>I</mi><mi>I</mi><msup><mi>I</mi><mo>′</mo></msup></mrow></msub></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/9/22/2978random matrix theoryHankel determinantsingularly perturbed Jacobi weightladder operatorsPainlevé V
spellingShingle Pengju Han
Yang Chen
The Hankel Determinants from a Singularly Perturbed Jacobi Weight
Mathematics
random matrix theory
Hankel determinant
singularly perturbed Jacobi weight
ladder operators
Painlevé V
title The Hankel Determinants from a Singularly Perturbed Jacobi Weight
title_full The Hankel Determinants from a Singularly Perturbed Jacobi Weight
title_fullStr The Hankel Determinants from a Singularly Perturbed Jacobi Weight
title_full_unstemmed The Hankel Determinants from a Singularly Perturbed Jacobi Weight
title_short The Hankel Determinants from a Singularly Perturbed Jacobi Weight
title_sort hankel determinants from a singularly perturbed jacobi weight
topic random matrix theory
Hankel determinant
singularly perturbed Jacobi weight
ladder operators
Painlevé V
url https://www.mdpi.com/2227-7390/9/22/2978
work_keys_str_mv AT pengjuhan thehankeldeterminantsfromasingularlyperturbedjacobiweight
AT yangchen thehankeldeterminantsfromasingularlyperturbedjacobiweight
AT pengjuhan hankeldeterminantsfromasingularlyperturbedjacobiweight
AT yangchen hankeldeterminantsfromasingularlyperturbedjacobiweight