High fidelity system modeling for high quality image reconstruction in clinical CT.

Today, while many researchers focus on the improvement of the regularization term in IR algorithms, they pay less concern to the improvement of the fidelity term. In this paper, we hypothesize that improving the fidelity term will further improve IR image quality in low-dose scanning, which typicall...

Full description

Bibliographic Details
Main Authors: Synho Do, William Clem Karl, Sarabjeet Singh, Mannudeep Kalra, Tom Brady, Ellie Shin, Homer Pien
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4229099?pdf=render
_version_ 1818939962631913472
author Synho Do
William Clem Karl
Sarabjeet Singh
Mannudeep Kalra
Tom Brady
Ellie Shin
Homer Pien
author_facet Synho Do
William Clem Karl
Sarabjeet Singh
Mannudeep Kalra
Tom Brady
Ellie Shin
Homer Pien
author_sort Synho Do
collection DOAJ
description Today, while many researchers focus on the improvement of the regularization term in IR algorithms, they pay less concern to the improvement of the fidelity term. In this paper, we hypothesize that improving the fidelity term will further improve IR image quality in low-dose scanning, which typically causes more noise. The purpose of this paper is to systematically test and examine the role of high-fidelity system models using raw data in the performance of iterative image reconstruction approach minimizing energy functional. We first isolated the fidelity term and analyzed the importance of using focal spot area modeling, flying focal spot location modeling, and active detector area modeling as opposed to just flying focal spot motion. We then compared images using different permutations of all three factors. Next, we tested the ability of the fidelity terms to retain signals upon application of the regularization term with all three factors. We then compared the differences between images generated by the proposed method and Filtered-Back-Projection. Lastly, we compared images of low-dose in vivo data using Filtered-Back-Projection, Iterative Reconstruction in Image Space, and the proposed method using raw data. The initial comparison of difference maps of images constructed showed that the focal spot area model and the active detector area model also have significant impacts on the quality of images produced. Upon application of the regularization term, images generated using all three factors were able to substantially decrease model mismatch error, artifacts, and noise. When the images generated by the proposed method were tested, conspicuity greatly increased, noise standard deviation decreased by 90% in homogeneous regions, and resolution also greatly improved. In conclusion, the improvement of the fidelity term to model clinical scanners is essential to generating higher quality images in low-dose imaging.
first_indexed 2024-12-20T06:32:05Z
format Article
id doaj.art-d6ba384bd507403dafeaa8bdab38cd7e
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-20T06:32:05Z
publishDate 2014-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-d6ba384bd507403dafeaa8bdab38cd7e2022-12-21T19:50:06ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-01911e11162510.1371/journal.pone.0111625High fidelity system modeling for high quality image reconstruction in clinical CT.Synho DoWilliam Clem KarlSarabjeet SinghMannudeep KalraTom BradyEllie ShinHomer PienToday, while many researchers focus on the improvement of the regularization term in IR algorithms, they pay less concern to the improvement of the fidelity term. In this paper, we hypothesize that improving the fidelity term will further improve IR image quality in low-dose scanning, which typically causes more noise. The purpose of this paper is to systematically test and examine the role of high-fidelity system models using raw data in the performance of iterative image reconstruction approach minimizing energy functional. We first isolated the fidelity term and analyzed the importance of using focal spot area modeling, flying focal spot location modeling, and active detector area modeling as opposed to just flying focal spot motion. We then compared images using different permutations of all three factors. Next, we tested the ability of the fidelity terms to retain signals upon application of the regularization term with all three factors. We then compared the differences between images generated by the proposed method and Filtered-Back-Projection. Lastly, we compared images of low-dose in vivo data using Filtered-Back-Projection, Iterative Reconstruction in Image Space, and the proposed method using raw data. The initial comparison of difference maps of images constructed showed that the focal spot area model and the active detector area model also have significant impacts on the quality of images produced. Upon application of the regularization term, images generated using all three factors were able to substantially decrease model mismatch error, artifacts, and noise. When the images generated by the proposed method were tested, conspicuity greatly increased, noise standard deviation decreased by 90% in homogeneous regions, and resolution also greatly improved. In conclusion, the improvement of the fidelity term to model clinical scanners is essential to generating higher quality images in low-dose imaging.http://europepmc.org/articles/PMC4229099?pdf=render
spellingShingle Synho Do
William Clem Karl
Sarabjeet Singh
Mannudeep Kalra
Tom Brady
Ellie Shin
Homer Pien
High fidelity system modeling for high quality image reconstruction in clinical CT.
PLoS ONE
title High fidelity system modeling for high quality image reconstruction in clinical CT.
title_full High fidelity system modeling for high quality image reconstruction in clinical CT.
title_fullStr High fidelity system modeling for high quality image reconstruction in clinical CT.
title_full_unstemmed High fidelity system modeling for high quality image reconstruction in clinical CT.
title_short High fidelity system modeling for high quality image reconstruction in clinical CT.
title_sort high fidelity system modeling for high quality image reconstruction in clinical ct
url http://europepmc.org/articles/PMC4229099?pdf=render
work_keys_str_mv AT synhodo highfidelitysystemmodelingforhighqualityimagereconstructioninclinicalct
AT williamclemkarl highfidelitysystemmodelingforhighqualityimagereconstructioninclinicalct
AT sarabjeetsingh highfidelitysystemmodelingforhighqualityimagereconstructioninclinicalct
AT mannudeepkalra highfidelitysystemmodelingforhighqualityimagereconstructioninclinicalct
AT tombrady highfidelitysystemmodelingforhighqualityimagereconstructioninclinicalct
AT ellieshin highfidelitysystemmodelingforhighqualityimagereconstructioninclinicalct
AT homerpien highfidelitysystemmodelingforhighqualityimagereconstructioninclinicalct