An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-suprapostural Task
Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2016-08-01
|
Series: | Frontiers in Human Neuroscience |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fnhum.2016.00420/full |
_version_ | 1819153580598231040 |
---|---|
author | Cheng-Ya Huang Cheng-Ya Huang Gwo-Ching Chang Yi-Ying Tsai Ing-Shiou Hwang Ing-Shiou Hwang |
author_facet | Cheng-Ya Huang Cheng-Ya Huang Gwo-Ching Chang Yi-Ying Tsai Ing-Shiou Hwang Ing-Shiou Hwang |
author_sort | Cheng-Ya Huang |
collection | DOAJ |
description | Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to 1) increased effectiveness of information transfer, 2) an anterior shift of processing resources toward frontal executive function, and 3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy. |
first_indexed | 2024-12-22T15:07:27Z |
format | Article |
id | doaj.art-d6bd1531f15d43aeba038831fecc0152 |
institution | Directory Open Access Journal |
issn | 1662-5161 |
language | English |
last_indexed | 2024-12-22T15:07:27Z |
publishDate | 2016-08-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Human Neuroscience |
spelling | doaj.art-d6bd1531f15d43aeba038831fecc01522022-12-21T18:21:57ZengFrontiers Media S.A.Frontiers in Human Neuroscience1662-51612016-08-011010.3389/fnhum.2016.00420211363An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-suprapostural TaskCheng-Ya Huang0Cheng-Ya Huang1Gwo-Ching Chang2Yi-Ying Tsai3Ing-Shiou Hwang4Ing-Shiou Hwang5National Taiwan UniversityNational Taiwan University HospitalI-Shou UniveristyNational Cheng Kung UniversityNational Cheng Kung UniversityNational Cheng Kung UniversityIncrease in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to 1) increased effectiveness of information transfer, 2) an anterior shift of processing resources toward frontal executive function, and 3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy.http://journal.frontiersin.org/Journal/10.3389/fnhum.2016.00420/fullfunctional connectivityevent-related potentialdual-taskgraph analysisnetwork-based statistics |
spellingShingle | Cheng-Ya Huang Cheng-Ya Huang Gwo-Ching Chang Yi-Ying Tsai Ing-Shiou Hwang Ing-Shiou Hwang An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-suprapostural Task Frontiers in Human Neuroscience functional connectivity event-related potential dual-task graph analysis network-based statistics |
title | An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-suprapostural Task |
title_full | An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-suprapostural Task |
title_fullStr | An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-suprapostural Task |
title_full_unstemmed | An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-suprapostural Task |
title_short | An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-suprapostural Task |
title_sort | increase in postural load facilitates an anterior shift of processing resources to frontal executive function in a postural suprapostural task |
topic | functional connectivity event-related potential dual-task graph analysis network-based statistics |
url | http://journal.frontiersin.org/Journal/10.3389/fnhum.2016.00420/full |
work_keys_str_mv | AT chengyahuang anincreaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT chengyahuang anincreaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT gwochingchang anincreaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT yiyingtsai anincreaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT ingshiouhwang anincreaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT ingshiouhwang anincreaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT chengyahuang increaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT chengyahuang increaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT gwochingchang increaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT yiyingtsai increaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT ingshiouhwang increaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask AT ingshiouhwang increaseinposturalloadfacilitatesananteriorshiftofprocessingresourcestofrontalexecutivefunctioninaposturalsupraposturaltask |