Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA
We combine James Webb Space Telescope (JWST) and Hubble Space Telescope imaging with Atacama Large Millimeter Array CO(2–1) spectroscopy to study the highly turbulent multiphase intergalactic medium (IGM) in Stephan’s Quintet on 25–150 pc scales. Previous Spitzer observations revealed luminous H _2...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/accc2a |
_version_ | 1797698212877828096 |
---|---|
author | P. N. Appleton P. Guillard Bjorn Emonts Francois Boulanger Aditya Togi William T. Reach Kathleen Alatalo M. Cluver T. Diaz Santos P.-A. Duc S. Gallagher P. Ogle E. O’Sullivan K. Voggel C. K. Xu |
author_facet | P. N. Appleton P. Guillard Bjorn Emonts Francois Boulanger Aditya Togi William T. Reach Kathleen Alatalo M. Cluver T. Diaz Santos P.-A. Duc S. Gallagher P. Ogle E. O’Sullivan K. Voggel C. K. Xu |
author_sort | P. N. Appleton |
collection | DOAJ |
description | We combine James Webb Space Telescope (JWST) and Hubble Space Telescope imaging with Atacama Large Millimeter Array CO(2–1) spectroscopy to study the highly turbulent multiphase intergalactic medium (IGM) in Stephan’s Quintet on 25–150 pc scales. Previous Spitzer observations revealed luminous H _2 line cooling across a 45 kpc-long filament, created by a giant shock wave, following the collision with an intruder galaxy, NGC 7318b. We demonstrate that the Mid-Infrared Instrument/F1000W/F770W filters are dominated by 0–0 S(3) H _2 and a combination of polycyclic aromatic hydrocarbon and 0–0 S(5) H _2 emission. These observations reveal the dissipation of kinetic energy as massive clouds experience collisions, interactions, and likely destruction/recycling within different phases of the IGM. In 1 kpc-scaled structure, warm H _2 was seen to form a triangular-shaped head and tail of compressed and stripped gas behind a narrow shell of cold H _2 . In another region, two cold molecular clumps with very different velocities are connected by an arrow-shaped stream of warm, probably shocked, H _2 suggesting a cloud–cloud collision is occurring. In both regions, a high warm-to-cold molecular gas fraction indicates that the cold clouds are being disrupted and converted into warm gas. We also map gas associated with an apparently forming dwarf galaxy. We suggest that the primary mechanism for exciting strong mid-IR H _2 lines throughout Stephan’s Quintet is through a fog of warm gas created by the shattering of denser cold molecular clouds and mixing/recycling in the post-shocked gas. A full picture of the diverse kinematics and excitation of the warm H _2 will require future JWST mid-IR spectroscopy. The current observations reveal the rich variety of ways that different gas phases can interact with one another. |
first_indexed | 2024-03-12T03:51:00Z |
format | Article |
id | doaj.art-d6c0761fe52f44b58477ed20c48f67ea |
institution | Directory Open Access Journal |
issn | 1538-4357 |
language | English |
last_indexed | 2024-03-12T03:51:00Z |
publishDate | 2023-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal |
spelling | doaj.art-d6c0761fe52f44b58477ed20c48f67ea2023-09-03T12:25:47ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-01951210410.3847/1538-4357/accc2aMultiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMAP. N. Appleton0https://orcid.org/0000-0002-7607-8766P. Guillard1https://orcid.org/0000-0002-2421-1350Bjorn Emonts2https://orcid.org/0000-0003-2983-815XFrancois Boulanger3https://orcid.org/0000-0003-1097-6042Aditya Togi4https://orcid.org/0000-0001-5042-3421William T. Reach5https://orcid.org/0000-0001-8362-4094Kathleen Alatalo6https://orcid.org/0000-0002-4261-2326M. Cluver7https://orcid.org/0000-0002-9871-6490T. Diaz Santos8https://orcid.org/0000-0003-0699-6083P.-A. Duc9https://orcid.org/0000-0003-3343-6284S. Gallagher10https://orcid.org/0000-0001-6217-8101P. Ogle11https://orcid.org/0000-0002-3471-981XE. O’Sullivan12https://orcid.org/0000-0002-5671-6900K. Voggel13https://orcid.org/0000-0001-6215-0950C. K. Xu14https://orcid.org/0000-0002-1588-6700Caltech/IPAC , MC 314-6, 1200 E. California Blvd., Pasadena, CA 91125, USA ; apple@ipac.caltech.eduSorbonne Université , CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98bis bd Arago, F-75014 Paris, France; Institut Universitaire de France , Ministère de l’Enseignement Supérieur et de la Recherche, 1 rue Descartes, F-75231 Paris Cedex 05, FranceNational Radio Astronomy Observatory , 520 Edgemont Road, Charlottesville, VA 22903, USAUPMC Universite Paris 06 , École Normale Supérieure, F-75005 Paris, FranceTexas State University , 601 University Dr, San Marcos, TX 78666, USAUniversities Space Research Association , NASA Ames Research Center MS 232-11, Mountain View, CA 94035, USASTScI , 3700 San Martin Drive, Baltimore, MD 21218, USACentre for Astrophysics and Supercomputing, Swinburne University of Technology , John Street, Hawthorn, VIC 3122, Australia; Department of Physics and Astronomy, University of the Western Cape , Robert Sobukwe Road, Bellville, 7535, South AfricaInstitute of Astrophysics , Foundation for Research and Technology-Hellas (FORTH), Heraklion, 70013, Greece; School of Sciences, European University Cyprus , Diogenes Street, Engomi, 1516 Nicosia, CyprusUniversité de Strasbourg , CNRS, Observatoire astronomique de Strasbourg (ObAS), UMR 7550, F-67000 Strasbourg, FranceInstitute for Earth and Space Exploration, Western University , 1151 Richmond Street, London, ON N6A 3K7, CanadaSTScI , 3700 San Martin Drive, Baltimore, MD 21218, USACenter for Astrophysics ∣ Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USAUniversité de Strasbourg , CNRS, Observatoire astronomique de Strasbourg (ObAS), UMR 7550, F-67000 Strasbourg, FranceChinese Academy of Sciences South America Center for Astronomy , National Astronomical Observatories, CAS, Beijing 100101, People’s Republic of China; National Astronomical Observatories, Chinese Academy of Sciences (NAOC) , 20A Datun Road, Chaoyang District, Beijing 100101, People’s Republic of ChinaWe combine James Webb Space Telescope (JWST) and Hubble Space Telescope imaging with Atacama Large Millimeter Array CO(2–1) spectroscopy to study the highly turbulent multiphase intergalactic medium (IGM) in Stephan’s Quintet on 25–150 pc scales. Previous Spitzer observations revealed luminous H _2 line cooling across a 45 kpc-long filament, created by a giant shock wave, following the collision with an intruder galaxy, NGC 7318b. We demonstrate that the Mid-Infrared Instrument/F1000W/F770W filters are dominated by 0–0 S(3) H _2 and a combination of polycyclic aromatic hydrocarbon and 0–0 S(5) H _2 emission. These observations reveal the dissipation of kinetic energy as massive clouds experience collisions, interactions, and likely destruction/recycling within different phases of the IGM. In 1 kpc-scaled structure, warm H _2 was seen to form a triangular-shaped head and tail of compressed and stripped gas behind a narrow shell of cold H _2 . In another region, two cold molecular clumps with very different velocities are connected by an arrow-shaped stream of warm, probably shocked, H _2 suggesting a cloud–cloud collision is occurring. In both regions, a high warm-to-cold molecular gas fraction indicates that the cold clouds are being disrupted and converted into warm gas. We also map gas associated with an apparently forming dwarf galaxy. We suggest that the primary mechanism for exciting strong mid-IR H _2 lines throughout Stephan’s Quintet is through a fog of warm gas created by the shattering of denser cold molecular clouds and mixing/recycling in the post-shocked gas. A full picture of the diverse kinematics and excitation of the warm H _2 will require future JWST mid-IR spectroscopy. The current observations reveal the rich variety of ways that different gas phases can interact with one another.https://doi.org/10.3847/1538-4357/accc2aIntergalactic cloudsIntergalactic medium phasesIntergalactic mediumGalaxy groupsHickson compact group |
spellingShingle | P. N. Appleton P. Guillard Bjorn Emonts Francois Boulanger Aditya Togi William T. Reach Kathleen Alatalo M. Cluver T. Diaz Santos P.-A. Duc S. Gallagher P. Ogle E. O’Sullivan K. Voggel C. K. Xu Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA The Astrophysical Journal Intergalactic clouds Intergalactic medium phases Intergalactic medium Galaxy groups Hickson compact group |
title | Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA |
title_full | Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA |
title_fullStr | Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA |
title_full_unstemmed | Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA |
title_short | Multiphase Gas Interactions on Subarcsec Scales in the Shocked Intergalactic Medium of Stephan’s Quintet with JWST and ALMA |
title_sort | multiphase gas interactions on subarcsec scales in the shocked intergalactic medium of stephan s quintet with jwst and alma |
topic | Intergalactic clouds Intergalactic medium phases Intergalactic medium Galaxy groups Hickson compact group |
url | https://doi.org/10.3847/1538-4357/accc2a |
work_keys_str_mv | AT pnappleton multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT pguillard multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT bjornemonts multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT francoisboulanger multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT adityatogi multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT williamtreach multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT kathleenalatalo multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT mcluver multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT tdiazsantos multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT paduc multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT sgallagher multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT pogle multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT eosullivan multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT kvoggel multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma AT ckxu multiphasegasinteractionsonsubarcsecscalesintheshockedintergalacticmediumofstephansquintetwithjwstandalma |