MNI: An enhanced multi-task neighborhood interaction model for recommendation on knowledge graph

To alleviate the data sparsity and cold start problems for collaborative filtering in recommendation systems, side information is usually leveraged by researchers to improve the recommendation performance. The utility of knowledge graph regards the side information as part of the graph structure and...

Full description

Bibliographic Details
Main Authors: Xintao Ma, Liyan Dong, Yuequn Wang, Yongli Li, Hao Zhang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553089/?tool=EBI
Description
Summary:To alleviate the data sparsity and cold start problems for collaborative filtering in recommendation systems, side information is usually leveraged by researchers to improve the recommendation performance. The utility of knowledge graph regards the side information as part of the graph structure and gives an explanation for recommendation results. In this paper, we propose an enhanced multi-task neighborhood interaction (MNI) model for recommendation on knowledge graphs. MNI explores not only the user-item interaction but also the neighbor-neighbor interactions, capturing a more sophisticated local structure. Besides, the entities and relations are also semantically embedded. And with the cross&compress unit, items in the recommendation system and entities in the knowledge graph can share latent features, and thus high-order interactions can be investigated. Through extensive experiments on real-world datasets, we demonstrate that MNI outperforms some of the state-of-the-art baselines both for CTR prediction and top-N recommendation.
ISSN:1932-6203