Anisotropic interpolation theorems of Musielak-Orlicz type

Abstract Anisotropy is a common attribute of Nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations { A k :...

Full description

Bibliographic Details
Main Authors: Jinxia Li, Ruirui Sun, Baode Li
Format: Article
Language:English
Published: SpringerOpen 2016-10-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-1184-z
_version_ 1818972263341359104
author Jinxia Li
Ruirui Sun
Baode Li
author_facet Jinxia Li
Ruirui Sun
Baode Li
author_sort Jinxia Li
collection DOAJ
description Abstract Anisotropy is a common attribute of Nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations { A k : k ∈ Z } $\{A^{k}: k\in\mathbb{Z}\}$ , where A is a real n × n $n\times n$ matrix with all its eigenvalues λ satisfy | λ | > 1 $|\lambda|>1$ . Let φ : R n × [ 0 , ∞ ) → [ 0 , ∞ ) $\varphi: \mathbb{R}^{n}\times[0, \infty)\to[0,\infty)$ be an anisotropic Musielak-Orlicz function such that φ ( x , ⋅ ) $\varphi(x,\cdot)$ is an Orlicz function and φ ( ⋅ , t ) $\varphi(\cdot,t)$ is a Muckenhoupt A ∞ ( A ) $\mathbb {A}_{\infty}(A)$ weight. The aim of this article is to obtain two anisotropic interpolation theorems of Musielak-Orlicz type, which are weighted anisotropic extension of Marcinkiewicz interpolation theorems. The above results are new even for the isotropic weighted settings.
first_indexed 2024-12-20T15:05:29Z
format Article
id doaj.art-d6d9ca86a962423cad8f3e2bb36db951
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-20T15:05:29Z
publishDate 2016-10-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-d6d9ca86a962423cad8f3e2bb36db9512022-12-21T19:36:31ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-10-012016112410.1186/s13660-016-1184-zAnisotropic interpolation theorems of Musielak-Orlicz typeJinxia Li0Ruirui Sun1Baode Li2College of Mathematics and System Science, Xinjiang UniversityCollege of Mathematics and System Science, Xinjiang UniversityCollege of Mathematics and System Science, Xinjiang UniversityAbstract Anisotropy is a common attribute of Nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations { A k : k ∈ Z } $\{A^{k}: k\in\mathbb{Z}\}$ , where A is a real n × n $n\times n$ matrix with all its eigenvalues λ satisfy | λ | > 1 $|\lambda|>1$ . Let φ : R n × [ 0 , ∞ ) → [ 0 , ∞ ) $\varphi: \mathbb{R}^{n}\times[0, \infty)\to[0,\infty)$ be an anisotropic Musielak-Orlicz function such that φ ( x , ⋅ ) $\varphi(x,\cdot)$ is an Orlicz function and φ ( ⋅ , t ) $\varphi(\cdot,t)$ is a Muckenhoupt A ∞ ( A ) $\mathbb {A}_{\infty}(A)$ weight. The aim of this article is to obtain two anisotropic interpolation theorems of Musielak-Orlicz type, which are weighted anisotropic extension of Marcinkiewicz interpolation theorems. The above results are new even for the isotropic weighted settings.http://link.springer.com/article/10.1186/s13660-016-1184-zanisotropic expansive dilationMuckenhoupt weightMusielak-Orlicz functionweighted Hardy spaceinterpolation
spellingShingle Jinxia Li
Ruirui Sun
Baode Li
Anisotropic interpolation theorems of Musielak-Orlicz type
Journal of Inequalities and Applications
anisotropic expansive dilation
Muckenhoupt weight
Musielak-Orlicz function
weighted Hardy space
interpolation
title Anisotropic interpolation theorems of Musielak-Orlicz type
title_full Anisotropic interpolation theorems of Musielak-Orlicz type
title_fullStr Anisotropic interpolation theorems of Musielak-Orlicz type
title_full_unstemmed Anisotropic interpolation theorems of Musielak-Orlicz type
title_short Anisotropic interpolation theorems of Musielak-Orlicz type
title_sort anisotropic interpolation theorems of musielak orlicz type
topic anisotropic expansive dilation
Muckenhoupt weight
Musielak-Orlicz function
weighted Hardy space
interpolation
url http://link.springer.com/article/10.1186/s13660-016-1184-z
work_keys_str_mv AT jinxiali anisotropicinterpolationtheoremsofmusielakorlicztype
AT ruiruisun anisotropicinterpolationtheoremsofmusielakorlicztype
AT baodeli anisotropicinterpolationtheoremsofmusielakorlicztype