Rotula aquatica Lour. inhibits growth and biofilm formation of clinically isolated uropathogenic Escherichia coli

Objective: To evaluate the anti-bacteria! and anti-biofilm activity of ethyl acetate fraction of Rotula aquatica Lour. (EFRA) against clinically isolated uropathogenic Escherichia coli. Methods: In vitro antibacterial and anti-biofilm studies were employed. The antimicrobial activity of EFRA was ass...

Full description

Bibliographic Details
Main Authors: A Vysakh, Sebastian Jose Midhun, Ninan Jisha, Kuriakose Jayesh, V Vijeesh, Mathew Jyothis, M S Latha
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2020-01-01
Series:Asian Pacific Journal of Tropical Biomedicine
Subjects:
Online Access:http://www.apjtb.org/article.asp?issn=2221-1691;year=2020;volume=10;issue=12;spage=547;epage=554;aulast=Vysakh
Description
Summary:Objective: To evaluate the anti-bacteria! and anti-biofilm activity of ethyl acetate fraction of Rotula aquatica Lour. (EFRA) against clinically isolated uropathogenic Escherichia coli. Methods: In vitro antibacterial and anti-biofilm studies were employed. The antimicrobial activity of EFRA was assayed by the well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the active fraction were determined by Resazurin method. The time-kill kinetic assay, acridine orange-ethidium bromide staining, propidium iodide uptake assay, and scanning electron microscopic (SEM) analysis were done to evaluate the efficacy of EFRA in killing uropathogenic Escherichia coli. The anti-biofilm activity was determined by 3-[4,5- dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium-bromide (MTT) assay and specific biofilm formation assay. Results: The well diffusion assay of EFRA showed a very clear zone of inhibition against Escherichia coli BRL-17. The MIC and MBC of EFRA were 2.5 mg/mL and 5 mg/mL, respectively. The time-kill kinetic assay, fluorescence microscopic analysis, propidium iodide uptake assay, and SEM analysis displayed the effect of EFRA in killing the bacteria. The MTT assay and specific biofilm formation assay showed that EFRA prevented the formation of biofilms. Conclusions: The results of the present study confirm that EFRA could prevent bacterial growth and inhibit its biofilm formation.
ISSN:2221-1691
2588-9222