Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications

BackgroundThe cochineal cactus (Opuntia cochenillifera), notable for its substantial agricultural and industrial applications, predominantly undergoes clonal reproduction, which presents significant challenges in breeding and germplasm innovation. Recent developments in mitochondrial genome engineer...

Cur síos iomlán

Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: Jing Liu, Yuqing Feng, Cheng Chen, Jing Yan, Xinyu Bai, Huiru Li, Chen Lin, Yinan Xiang, Wen Tian, Zhechen Qi, Jing Yu, Xiaoling Yan
Formáid: Alt
Teanga:English
Foilsithe / Cruthaithe: Frontiers Media S.A. 2024-03-01
Sraith:Frontiers in Plant Science
Ábhair:
Rochtain ar líne:https://www.frontiersin.org/articles/10.3389/fpls.2024.1347945/full
_version_ 1827324810584129536
author Jing Liu
Jing Liu
Yuqing Feng
Cheng Chen
Jing Yan
Xinyu Bai
Huiru Li
Chen Lin
Yinan Xiang
Yinan Xiang
Wen Tian
Zhechen Qi
Jing Yu
Xiaoling Yan
author_facet Jing Liu
Jing Liu
Yuqing Feng
Cheng Chen
Jing Yan
Xinyu Bai
Huiru Li
Chen Lin
Yinan Xiang
Yinan Xiang
Wen Tian
Zhechen Qi
Jing Yu
Xiaoling Yan
author_sort Jing Liu
collection DOAJ
description BackgroundThe cochineal cactus (Opuntia cochenillifera), notable for its substantial agricultural and industrial applications, predominantly undergoes clonal reproduction, which presents significant challenges in breeding and germplasm innovation. Recent developments in mitochondrial genome engineering offer promising avenues for introducing heritable mutations, potentially facilitating selective sexual reproduction through the creation of cytoplasmic male sterile genotypes. However, the lack of comprehensive mitochondrial genome information for Opuntia species hinders these efforts. Here, we intended to sequence and characterize its mitochondrial genome to maximize the potential of its genomes for evolutionary studies, molecular breeding, and molecular marker developments.ResultsWe sequenced the total DNA of the O. cochenillifera using DNBSEQ and Nanopore platforms. The mitochondrial genome was then assembled using a hybrid assembly strategy using Unicycler software. We found that the mitochondrial genome of O. cochenillifera has a length of 1,156,235 bp, a GC content of 43.06%, and contains 54 unique protein-coding genes and 346 simple repeats. Comparative genomic analysis revealed 48 homologous fragments shared between mitochondrial and chloroplast genomes, with a total length of 47,935 bp. Additionally, the comparison of mitochondrial genomes from four Cactaceae species highlighted their dynamic nature and frequent mitogenomic reorganizations.ConclusionOur study provides a new perspective on the evolution of the organelle genome and its potential application in genetic breeding. These findings offer valuable insights into the mitochondrial genetics of Cactaceae, potentially facilitating future research and breeding programs aimed at enhancing the genetic diversity and adaptability of O. cochenillifera by leveraging its unique mitochondrial genome characteristics.
first_indexed 2024-03-07T14:03:28Z
format Article
id doaj.art-d6f072e8910b410ea886cc3b39f9e5e6
institution Directory Open Access Journal
issn 1664-462X
language English
last_indexed 2024-03-07T14:03:28Z
publishDate 2024-03-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Plant Science
spelling doaj.art-d6f072e8910b410ea886cc3b39f9e5e62024-03-07T04:32:27ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2024-03-011510.3389/fpls.2024.13479451347945Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implicationsJing Liu0Jing Liu1Yuqing Feng2Cheng Chen3Jing Yan4Xinyu Bai5Huiru Li6Chen Lin7Yinan Xiang8Yinan Xiang9Wen Tian10Zhechen Qi11Jing Yu12Xiaoling Yan13Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, ChinaZhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, ChinaZhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, ChinaCollege of Life Science, Shanghai Normal University, Shanghai, ChinaEastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, ChinaZhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, ChinaEastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, ChinaEastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, ChinaEastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, ChinaZhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, ChinaAnimal Plant and Food Inspection Center of Nanjing Customs District, Nanjing, ChinaZhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, ChinaCollege of Life Science, Shanghai Normal University, Shanghai, ChinaEastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, ChinaBackgroundThe cochineal cactus (Opuntia cochenillifera), notable for its substantial agricultural and industrial applications, predominantly undergoes clonal reproduction, which presents significant challenges in breeding and germplasm innovation. Recent developments in mitochondrial genome engineering offer promising avenues for introducing heritable mutations, potentially facilitating selective sexual reproduction through the creation of cytoplasmic male sterile genotypes. However, the lack of comprehensive mitochondrial genome information for Opuntia species hinders these efforts. Here, we intended to sequence and characterize its mitochondrial genome to maximize the potential of its genomes for evolutionary studies, molecular breeding, and molecular marker developments.ResultsWe sequenced the total DNA of the O. cochenillifera using DNBSEQ and Nanopore platforms. The mitochondrial genome was then assembled using a hybrid assembly strategy using Unicycler software. We found that the mitochondrial genome of O. cochenillifera has a length of 1,156,235 bp, a GC content of 43.06%, and contains 54 unique protein-coding genes and 346 simple repeats. Comparative genomic analysis revealed 48 homologous fragments shared between mitochondrial and chloroplast genomes, with a total length of 47,935 bp. Additionally, the comparison of mitochondrial genomes from four Cactaceae species highlighted their dynamic nature and frequent mitogenomic reorganizations.ConclusionOur study provides a new perspective on the evolution of the organelle genome and its potential application in genetic breeding. These findings offer valuable insights into the mitochondrial genetics of Cactaceae, potentially facilitating future research and breeding programs aimed at enhancing the genetic diversity and adaptability of O. cochenillifera by leveraging its unique mitochondrial genome characteristics.https://www.frontiersin.org/articles/10.3389/fpls.2024.1347945/fullCactaceaeclonal reproductiongene transferhomologous recombinationmitochondrial genomeOpuntia cochenillifera
spellingShingle Jing Liu
Jing Liu
Yuqing Feng
Cheng Chen
Jing Yan
Xinyu Bai
Huiru Li
Chen Lin
Yinan Xiang
Yinan Xiang
Wen Tian
Zhechen Qi
Jing Yu
Xiaoling Yan
Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications
Frontiers in Plant Science
Cactaceae
clonal reproduction
gene transfer
homologous recombination
mitochondrial genome
Opuntia cochenillifera
title Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications
title_full Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications
title_fullStr Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications
title_full_unstemmed Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications
title_short Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications
title_sort genomic insights into the clonal reproductive opuntia cochenillifera mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications
topic Cactaceae
clonal reproduction
gene transfer
homologous recombination
mitochondrial genome
Opuntia cochenillifera
url https://www.frontiersin.org/articles/10.3389/fpls.2024.1347945/full
work_keys_str_mv AT jingliu genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT jingliu genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT yuqingfeng genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT chengchen genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT jingyan genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT xinyubai genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT huiruli genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT chenlin genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT yinanxiang genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT yinanxiang genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT wentian genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT zhechenqi genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT jingyu genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications
AT xiaolingyan genomicinsightsintotheclonalreproductiveopuntiacochenilliferamitochondrialandchloroplastgenomesofthecochinealcactusforenhancedunderstandingofstructuraldynamicsandevolutionaryimplications