Cardiac dose reduction with deep-inspiratory breath hold technique of radiotherapy for left-sided breast cancer

Introduction: Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. Aim: In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (...

Full description

Bibliographic Details
Main Authors: Lalitha Kameshwari Sripathi, Parveen Ahlawat, David K Simson, Chira Ranjan Khadanga, Lakshmipathi Kamarsu, Shital Kumar Surana, Kavi Arasu, Harpreet Singh
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2017-01-01
Series:Journal of Medical Physics
Subjects:
Online Access:http://www.jmp.org.in/article.asp?issn=0971-6203;year=2017;volume=42;issue=3;spage=123;epage=127;aulast=Sripathi
Description
Summary:Introduction: Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. Aim: In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Materials and Methods: Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index , and mean dose to heart (Heart Dmean), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Results: Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRTDIBHdecreased the Heart Dmeanby 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRTFB. IMRT further lowered mean LAD dose by 18%. Heart Dmeanwas lower with 3DCRTDIBHover IMRTDIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V20of ipsilateral lung were lower with 3DCRTDIBHover IMRTDIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. Conclusions: 3DCRTDIBHprovided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT.
ISSN:0971-6203
1998-3913