Cyclic sieving for two families of non-crossing graphs
We prove the cyclic sieving phenomenon for non-crossing forests and non-crossing graphs. More precisely, the cyclic group acts on these graphs naturally by rotation and we show that the orbit structure of this action is encoded by certain polynomials. Our results confirm two conjectures of Alan Guo.
Main Author: | Svetlana Poznanović |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2011-01-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Subjects: | |
Online Access: | https://dmtcs.episciences.org/2953/pdf |
Similar Items
-
Cyclic sieving phenomenon in non-crossing connected graphs
by: Alan Guo
Published: (2011-01-01) -
(k − 2)-linear connected components in hypergraphs of rank k
by: Florian Galliot, et al.
Published: (2023-11-01) -
On Kerov polynomials for Jack characters (extended abstract)
by: Valentin Féray, et al.
Published: (2013-01-01) -
On the $L(p,1)$-labelling of graphs
by: Daniel Gonçalves
Published: (2005-01-01) -
Staircase Macdonald polynomials and the $q$-Discriminant
by: Adrien Boussicault, et al.
Published: (2008-01-01)