Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein.

Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson's disease (PD). To investigate how GBA mutations cause PD, we...

Full description

Bibliographic Details
Main Authors: Norihito Uemura, Masato Koike, Satoshi Ansai, Masato Kinoshita, Tomoko Ishikawa-Fujiwara, Hideaki Matsui, Kiyoshi Naruse, Naoaki Sakamoto, Yasuo Uchiyama, Takeshi Todo, Shunichi Takeda, Hodaka Yamakado, Ryosuke Takahashi
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-04-01
Series:PLoS Genetics
Online Access:http://europepmc.org/articles/PMC4383526?pdf=render
_version_ 1828736134023217152
author Norihito Uemura
Masato Koike
Satoshi Ansai
Masato Kinoshita
Tomoko Ishikawa-Fujiwara
Hideaki Matsui
Kiyoshi Naruse
Naoaki Sakamoto
Yasuo Uchiyama
Takeshi Todo
Shunichi Takeda
Hodaka Yamakado
Ryosuke Takahashi
author_facet Norihito Uemura
Masato Koike
Satoshi Ansai
Masato Kinoshita
Tomoko Ishikawa-Fujiwara
Hideaki Matsui
Kiyoshi Naruse
Naoaki Sakamoto
Yasuo Uchiyama
Takeshi Todo
Shunichi Takeda
Hodaka Yamakado
Ryosuke Takahashi
author_sort Norihito Uemura
collection DOAJ
description Homozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson's disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCase) activity. In contrast to the perinatal death in humans and mice lacking GCase activity, GBA-/- medaka survived for months, enabling analysis of the pathological progression. GBA-/- medaka displayed the pathological phenotypes resembling human neuronopathic GD including infiltration of Gaucher cell-like cells into the brains, progressive neuronal loss, and microgliosis. Detailed pathological findings represented lysosomal abnormalities in neurons and alpha-synuclein (α-syn) accumulation in axonal swellings containing autophagosomes. Unexpectedly, disruption of α-syn did not improve the life span, formation of axonal swellings, neuronal loss, or neuroinflammation in GBA-/- medaka. Taken together, the present study revealed GBA-/- medaka as a novel neuronopathic GD model, the pahological mechanisms of α-syn accumulation caused by GCase deficiency, and the minimal contribution of α-syn to the pathogenesis of neuronopathic GD.
first_indexed 2024-04-12T23:19:54Z
format Article
id doaj.art-d707126108e9415198b5a43c86b96048
institution Directory Open Access Journal
issn 1553-7390
1553-7404
language English
last_indexed 2024-04-12T23:19:54Z
publishDate 2015-04-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Genetics
spelling doaj.art-d707126108e9415198b5a43c86b960482022-12-22T03:12:34ZengPublic Library of Science (PLoS)PLoS Genetics1553-73901553-74042015-04-01114e100506510.1371/journal.pgen.1005065Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein.Norihito UemuraMasato KoikeSatoshi AnsaiMasato KinoshitaTomoko Ishikawa-FujiwaraHideaki MatsuiKiyoshi NaruseNaoaki SakamotoYasuo UchiyamaTakeshi TodoShunichi TakedaHodaka YamakadoRyosuke TakahashiHomozygous mutations in the glucocerebrosidase (GBA) gene result in Gaucher disease (GD), the most common lysosomal storage disease. Recent genetic studies have revealed that GBA mutations confer a strong risk for sporadic Parkinson's disease (PD). To investigate how GBA mutations cause PD, we generated GBA nonsense mutant (GBA-/-) medaka that are completely deficient in glucocerebrosidase (GCase) activity. In contrast to the perinatal death in humans and mice lacking GCase activity, GBA-/- medaka survived for months, enabling analysis of the pathological progression. GBA-/- medaka displayed the pathological phenotypes resembling human neuronopathic GD including infiltration of Gaucher cell-like cells into the brains, progressive neuronal loss, and microgliosis. Detailed pathological findings represented lysosomal abnormalities in neurons and alpha-synuclein (α-syn) accumulation in axonal swellings containing autophagosomes. Unexpectedly, disruption of α-syn did not improve the life span, formation of axonal swellings, neuronal loss, or neuroinflammation in GBA-/- medaka. Taken together, the present study revealed GBA-/- medaka as a novel neuronopathic GD model, the pahological mechanisms of α-syn accumulation caused by GCase deficiency, and the minimal contribution of α-syn to the pathogenesis of neuronopathic GD.http://europepmc.org/articles/PMC4383526?pdf=render
spellingShingle Norihito Uemura
Masato Koike
Satoshi Ansai
Masato Kinoshita
Tomoko Ishikawa-Fujiwara
Hideaki Matsui
Kiyoshi Naruse
Naoaki Sakamoto
Yasuo Uchiyama
Takeshi Todo
Shunichi Takeda
Hodaka Yamakado
Ryosuke Takahashi
Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein.
PLoS Genetics
title Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein.
title_full Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein.
title_fullStr Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein.
title_full_unstemmed Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein.
title_short Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein.
title_sort viable neuronopathic gaucher disease model in medaka oryzias latipes displays axonal accumulation of alpha synuclein
url http://europepmc.org/articles/PMC4383526?pdf=render
work_keys_str_mv AT norihitouemura viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT masatokoike viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT satoshiansai viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT masatokinoshita viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT tomokoishikawafujiwara viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT hideakimatsui viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT kiyoshinaruse viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT naoakisakamoto viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT yasuouchiyama viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT takeshitodo viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT shunichitakeda viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT hodakayamakado viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein
AT ryosuketakahashi viableneuronopathicgaucherdiseasemodelinmedakaoryziaslatipesdisplaysaxonalaccumulationofalphasynuclein