Trapping Charge Mechanism in Hv1 Channels (<i>Ci</i>Hv1)

The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that...

Full description

Bibliographic Details
Main Authors: Miguel Fernández, Juan J. Alvear-Arias, Emerson M. Carmona, Christian Carrillo, Antonio Pena-Pichicoi, Erick O. Hernandez-Ochoa, Alan Neely, Osvaldo Alvarez, Ramon Latorre, Jose A. Garate, Carlos Gonzalez
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/25/1/426
_version_ 1797358694552305664
author Miguel Fernández
Juan J. Alvear-Arias
Emerson M. Carmona
Christian Carrillo
Antonio Pena-Pichicoi
Erick O. Hernandez-Ochoa
Alan Neely
Osvaldo Alvarez
Ramon Latorre
Jose A. Garate
Carlos Gonzalez
author_facet Miguel Fernández
Juan J. Alvear-Arias
Emerson M. Carmona
Christian Carrillo
Antonio Pena-Pichicoi
Erick O. Hernandez-Ochoa
Alan Neely
Osvaldo Alvarez
Ramon Latorre
Jose A. Garate
Carlos Gonzalez
author_sort Miguel Fernández
collection DOAJ
description The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the <i>Ciona</i>-Hv1 to understand the trapping of the voltage sensor.
first_indexed 2024-03-08T15:05:44Z
format Article
id doaj.art-d70dfb18b1174728b2b0ac802e261aaf
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-08T15:05:44Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-d70dfb18b1174728b2b0ac802e261aaf2024-01-10T14:59:28ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672023-12-0125142610.3390/ijms25010426Trapping Charge Mechanism in Hv1 Channels (<i>Ci</i>Hv1)Miguel Fernández0Juan J. Alvear-Arias1Emerson M. Carmona2Christian Carrillo3Antonio Pena-Pichicoi4Erick O. Hernandez-Ochoa5Alan Neely6Osvaldo Alvarez7Ramon Latorre8Jose A. Garate9Carlos Gonzalez10Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, ChileCentro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, ChileCell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USACentro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, ChileCentro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, ChileDepartment of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USACentro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, ChileCentro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, ChileCentro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, ChileFacultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastian, Santiago 7780272, ChileMillennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso 2351319, ChileThe majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic–hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the <i>Ciona</i>-Hv1 to understand the trapping of the voltage sensor.https://www.mdpi.com/1422-0067/25/1/426<i>Ciona intestinalis</i>proton channelgating currentscharge trapping
spellingShingle Miguel Fernández
Juan J. Alvear-Arias
Emerson M. Carmona
Christian Carrillo
Antonio Pena-Pichicoi
Erick O. Hernandez-Ochoa
Alan Neely
Osvaldo Alvarez
Ramon Latorre
Jose A. Garate
Carlos Gonzalez
Trapping Charge Mechanism in Hv1 Channels (<i>Ci</i>Hv1)
International Journal of Molecular Sciences
<i>Ciona intestinalis</i>
proton channel
gating currents
charge trapping
title Trapping Charge Mechanism in Hv1 Channels (<i>Ci</i>Hv1)
title_full Trapping Charge Mechanism in Hv1 Channels (<i>Ci</i>Hv1)
title_fullStr Trapping Charge Mechanism in Hv1 Channels (<i>Ci</i>Hv1)
title_full_unstemmed Trapping Charge Mechanism in Hv1 Channels (<i>Ci</i>Hv1)
title_short Trapping Charge Mechanism in Hv1 Channels (<i>Ci</i>Hv1)
title_sort trapping charge mechanism in hv1 channels i ci i hv1
topic <i>Ciona intestinalis</i>
proton channel
gating currents
charge trapping
url https://www.mdpi.com/1422-0067/25/1/426
work_keys_str_mv AT miguelfernandez trappingchargemechanisminhv1channelsiciihv1
AT juanjalveararias trappingchargemechanisminhv1channelsiciihv1
AT emersonmcarmona trappingchargemechanisminhv1channelsiciihv1
AT christiancarrillo trappingchargemechanisminhv1channelsiciihv1
AT antoniopenapichicoi trappingchargemechanisminhv1channelsiciihv1
AT erickohernandezochoa trappingchargemechanisminhv1channelsiciihv1
AT alanneely trappingchargemechanisminhv1channelsiciihv1
AT osvaldoalvarez trappingchargemechanisminhv1channelsiciihv1
AT ramonlatorre trappingchargemechanisminhv1channelsiciihv1
AT joseagarate trappingchargemechanisminhv1channelsiciihv1
AT carlosgonzalez trappingchargemechanisminhv1channelsiciihv1