A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USA

Travel time estimation is crucial for several geospatial research studies, particularly healthcare accessibility studies. This paper presents a comparative study of six methods for drive time estimation on geospatial big data in the USA. The comparison is done with respect to the cost, accuracy, and...

Full description

Bibliographic Details
Main Authors: X. Fu, D. Kakkar, J. Chen, K. M. Moynihan, T. A. Hegland, J. Blossom
Format: Article
Language:English
Published: Copernicus Publications 2023-06-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://isprs-archives.copernicus.org/articles/XLVIII-4-W7-2023/53/2023/isprs-archives-XLVIII-4-W7-2023-53-2023.pdf
_version_ 1797797564258451456
author X. Fu
X. Fu
D. Kakkar
J. Chen
K. M. Moynihan
T. A. Hegland
J. Blossom
author_facet X. Fu
X. Fu
D. Kakkar
J. Chen
K. M. Moynihan
T. A. Hegland
J. Blossom
author_sort X. Fu
collection DOAJ
description Travel time estimation is crucial for several geospatial research studies, particularly healthcare accessibility studies. This paper presents a comparative study of six methods for drive time estimation on geospatial big data in the USA. The comparison is done with respect to the cost, accuracy, and scalability of these methods. The six methods examined are Google Maps API, Bing Maps API, Esri Routing Web Service, ArcGIS Pro Desktop, OpenStreetMap NetworkX (OSMnx), and Open Source Routing Machine (OSRM). Our case study involves calculating driving times of 10,000 origin-destination (OD) pairs between ZIP code population centroids and pediatric hospitals in the USA. We found that OSRM provides a low-cost, accurate, and efficient solution for calculating travel time on geospatial big data. Our study provides valuable insight into selecting the most appropriate drive time estimation method and is a benchmark for comparing the six different methods. Our open-source scripts are published on GitHub (https://github.com/wybert/Comparative-Study-of-Methods-for-Drive-Time-Estimation) to facilitate further usage and research by the wider academic community.
first_indexed 2024-03-13T03:50:14Z
format Article
id doaj.art-d71d2696fca84792b53cf4b5ce175b7f
institution Directory Open Access Journal
issn 1682-1750
2194-9034
language English
last_indexed 2024-03-13T03:50:14Z
publishDate 2023-06-01
publisher Copernicus Publications
record_format Article
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
spelling doaj.art-d71d2696fca84792b53cf4b5ce175b7f2023-06-22T16:12:26ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342023-06-01XLVIII-4-W7-2023536010.5194/isprs-archives-XLVIII-4-W7-2023-53-2023A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USAX. Fu0X. Fu1D. Kakkar2J. Chen3K. M. Moynihan4T. A. Hegland5J. Blossom6Center for Geographic Analysis (CGA), Harvard University, Cambridge Massachusetts, USAState Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, ChinaCenter for Geographic Analysis (CGA), Harvard University, Cambridge Massachusetts, USACenter for Geographic Analysis (CGA), Harvard University, Cambridge Massachusetts, USABoston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USAAgency for Healthcare Research and Quality, Rockville, Maryland, USACenter for Geographic Analysis (CGA), Harvard University, Cambridge Massachusetts, USATravel time estimation is crucial for several geospatial research studies, particularly healthcare accessibility studies. This paper presents a comparative study of six methods for drive time estimation on geospatial big data in the USA. The comparison is done with respect to the cost, accuracy, and scalability of these methods. The six methods examined are Google Maps API, Bing Maps API, Esri Routing Web Service, ArcGIS Pro Desktop, OpenStreetMap NetworkX (OSMnx), and Open Source Routing Machine (OSRM). Our case study involves calculating driving times of 10,000 origin-destination (OD) pairs between ZIP code population centroids and pediatric hospitals in the USA. We found that OSRM provides a low-cost, accurate, and efficient solution for calculating travel time on geospatial big data. Our study provides valuable insight into selecting the most appropriate drive time estimation method and is a benchmark for comparing the six different methods. Our open-source scripts are published on GitHub (https://github.com/wybert/Comparative-Study-of-Methods-for-Drive-Time-Estimation) to facilitate further usage and research by the wider academic community.https://isprs-archives.copernicus.org/articles/XLVIII-4-W7-2023/53/2023/isprs-archives-XLVIII-4-W7-2023-53-2023.pdf
spellingShingle X. Fu
X. Fu
D. Kakkar
J. Chen
K. M. Moynihan
T. A. Hegland
J. Blossom
A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USA
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
title A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USA
title_full A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USA
title_fullStr A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USA
title_full_unstemmed A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USA
title_short A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USA
title_sort comparative study of methods for drive time estimation on geospatial big data a case study in usa
url https://isprs-archives.copernicus.org/articles/XLVIII-4-W7-2023/53/2023/isprs-archives-XLVIII-4-W7-2023-53-2023.pdf
work_keys_str_mv AT xfu acomparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT xfu acomparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT dkakkar acomparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT jchen acomparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT kmmoynihan acomparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT tahegland acomparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT jblossom acomparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT xfu comparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT xfu comparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT dkakkar comparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT jchen comparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT kmmoynihan comparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT tahegland comparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa
AT jblossom comparativestudyofmethodsfordrivetimeestimationongeospatialbigdataacasestudyinusa