Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest
Data collection and estimation of variables that describe the structure of tropical forests, diversity, and richness of tree species are challenging tasks. Light detection and ranging (LiDAR) is a powerful technique due to its ability to penetrate small openings and cracks in the forest canopy, enab...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/13/13/2444 |
_version_ | 1827689033285763072 |
---|---|
author | Rorai Pereira Martins-Neto Antonio Maria Garcia Tommaselli Nilton Nobuhiro Imai Hassan Camil David Milto Miltiadou Eija Honkavaara |
author_facet | Rorai Pereira Martins-Neto Antonio Maria Garcia Tommaselli Nilton Nobuhiro Imai Hassan Camil David Milto Miltiadou Eija Honkavaara |
author_sort | Rorai Pereira Martins-Neto |
collection | DOAJ |
description | Data collection and estimation of variables that describe the structure of tropical forests, diversity, and richness of tree species are challenging tasks. Light detection and ranging (LiDAR) is a powerful technique due to its ability to penetrate small openings and cracks in the forest canopy, enabling the collection of structural information in complex forests. Our objective was to identify the most significant LiDAR metrics and machine learning techniques to estimate the stand and diversity variables in a disturbed heterogeneous tropical forest. Data were collected in a remnant of the Brazilian Atlantic Forest with different successional stages. LiDAR metrics were used in three types of transformation: (i) raw data (untransformed), (ii) correlation analysis, and (iii) principal component analysis (PCA). These transformations were tested with four machine learning techniques: (i) artificial neural network (ANN), ordinary least squares (OLS), random forests (RF), and support vector machine (SVM) with different configurations resulting in 27 combinations. The best technique was determined based on the lowest RMSE (%) and corrected Akaike information criterion (AICc), and bias (%) values close to zero. The output forest variables were mean diameter at breast height (MDBH), quadratic mean diameter (QMD), basal area (BA), density (DEN), number of tree species (NTS), as well as Shannon–Waver (H’) and Simpson’s diversity indices (D). The best input data were the new variables obtained from the PCA, and the best modeling method was ANN with two hidden layers for the variables MDBH, QMD, BA, and DEN while for NTS, H’and D, the ANN with three hidden layers were the best methods. For MDBH, QMD, H’and D, the RMSE was 5.2–10% with a bias between −1.7% and 3.6%. The BA, DEN, and NTS were the most difficult variables to estimate, due to their complexity in tropical forests; the RMSE was 16.2–27.6% and the bias between −12.4% and −0.24%. The results showed that it is possible to estimate the stand and diversity variables in heterogeneous forests with LiDAR data. |
first_indexed | 2024-03-10T10:10:08Z |
format | Article |
id | doaj.art-d724093c152d43ef8a52eea5fc4f6d80 |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-03-10T10:10:08Z |
publishDate | 2021-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-d724093c152d43ef8a52eea5fc4f6d802023-11-22T01:18:03ZengMDPI AGRemote Sensing2072-42922021-06-011313244410.3390/rs13132444Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic ForestRorai Pereira Martins-Neto0Antonio Maria Garcia Tommaselli1Nilton Nobuhiro Imai2Hassan Camil David3Milto Miltiadou4Eija Honkavaara5Graduate Program in Cartographic Sciences, São Paulo State University (UNESP), Roberto Simonsen 305, Presidente Prudente 19060-900, SP, BrazilGraduate Program in Cartographic Sciences, São Paulo State University (UNESP), Roberto Simonsen 305, Presidente Prudente 19060-900, SP, BrazilGraduate Program in Cartographic Sciences, São Paulo State University (UNESP), Roberto Simonsen 305, Presidente Prudente 19060-900, SP, BrazilDepartment of Forestry, Federal Rural University of Amazonia (UFRA), Tv. Pau Amarelo s/n, Capitão Poço 68650-000, PA, BrazilERATOSTHENES Centre of Excellence, Limassol 3036, CyprusFinnish Geospatial Research Institute (FGI), National Land Survey of Finland, Geodeetinrinne 2, 02430 Masala, FinlandData collection and estimation of variables that describe the structure of tropical forests, diversity, and richness of tree species are challenging tasks. Light detection and ranging (LiDAR) is a powerful technique due to its ability to penetrate small openings and cracks in the forest canopy, enabling the collection of structural information in complex forests. Our objective was to identify the most significant LiDAR metrics and machine learning techniques to estimate the stand and diversity variables in a disturbed heterogeneous tropical forest. Data were collected in a remnant of the Brazilian Atlantic Forest with different successional stages. LiDAR metrics were used in three types of transformation: (i) raw data (untransformed), (ii) correlation analysis, and (iii) principal component analysis (PCA). These transformations were tested with four machine learning techniques: (i) artificial neural network (ANN), ordinary least squares (OLS), random forests (RF), and support vector machine (SVM) with different configurations resulting in 27 combinations. The best technique was determined based on the lowest RMSE (%) and corrected Akaike information criterion (AICc), and bias (%) values close to zero. The output forest variables were mean diameter at breast height (MDBH), quadratic mean diameter (QMD), basal area (BA), density (DEN), number of tree species (NTS), as well as Shannon–Waver (H’) and Simpson’s diversity indices (D). The best input data were the new variables obtained from the PCA, and the best modeling method was ANN with two hidden layers for the variables MDBH, QMD, BA, and DEN while for NTS, H’and D, the ANN with three hidden layers were the best methods. For MDBH, QMD, H’and D, the RMSE was 5.2–10% with a bias between −1.7% and 3.6%. The BA, DEN, and NTS were the most difficult variables to estimate, due to their complexity in tropical forests; the RMSE was 16.2–27.6% and the bias between −12.4% and −0.24%. The results showed that it is possible to estimate the stand and diversity variables in heterogeneous forests with LiDAR data.https://www.mdpi.com/2072-4292/13/13/2444tropical forestsairborne laser scanningforest structureforest attributesartificial intelligencemachine learning |
spellingShingle | Rorai Pereira Martins-Neto Antonio Maria Garcia Tommaselli Nilton Nobuhiro Imai Hassan Camil David Milto Miltiadou Eija Honkavaara Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest Remote Sensing tropical forests airborne laser scanning forest structure forest attributes artificial intelligence machine learning |
title | Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest |
title_full | Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest |
title_fullStr | Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest |
title_full_unstemmed | Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest |
title_short | Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest |
title_sort | identification of significative lidar metrics and comparison of machine learning approaches for estimating stand and diversity variables in heterogeneous brazilian atlantic forest |
topic | tropical forests airborne laser scanning forest structure forest attributes artificial intelligence machine learning |
url | https://www.mdpi.com/2072-4292/13/13/2444 |
work_keys_str_mv | AT roraipereiramartinsneto identificationofsignificativelidarmetricsandcomparisonofmachinelearningapproachesforestimatingstandanddiversityvariablesinheterogeneousbrazilianatlanticforest AT antoniomariagarciatommaselli identificationofsignificativelidarmetricsandcomparisonofmachinelearningapproachesforestimatingstandanddiversityvariablesinheterogeneousbrazilianatlanticforest AT niltonnobuhiroimai identificationofsignificativelidarmetricsandcomparisonofmachinelearningapproachesforestimatingstandanddiversityvariablesinheterogeneousbrazilianatlanticforest AT hassancamildavid identificationofsignificativelidarmetricsandcomparisonofmachinelearningapproachesforestimatingstandanddiversityvariablesinheterogeneousbrazilianatlanticforest AT miltomiltiadou identificationofsignificativelidarmetricsandcomparisonofmachinelearningapproachesforestimatingstandanddiversityvariablesinheterogeneousbrazilianatlanticforest AT eijahonkavaara identificationofsignificativelidarmetricsandcomparisonofmachinelearningapproachesforestimatingstandanddiversityvariablesinheterogeneousbrazilianatlanticforest |