Revisited Carmichael’s Reduced Totient Function

The modified Totient function of Carmichael <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>(</mo><mo>.</mo><mo>)</mo></mrow></semanti...

Full description

Bibliographic Details
Main Authors: Samir Brahim Belhaouari, Yassine Hamdi, Abdelouahed Hamdi
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/15/1800
_version_ 1797525345034829824
author Samir Brahim Belhaouari
Yassine Hamdi
Abdelouahed Hamdi
author_facet Samir Brahim Belhaouari
Yassine Hamdi
Abdelouahed Hamdi
author_sort Samir Brahim Belhaouari
collection DOAJ
description The modified Totient function of Carmichael <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>(</mo><mo>.</mo><mo>)</mo></mrow></semantics></math></inline-formula> is revisited, where important properties have been highlighted. Particularly, an iterative scheme is given for calculating the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>(</mo><mo>.</mo><mo>)</mo></mrow></semantics></math></inline-formula> function. A comparison between the Euler <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula> and the reduced totient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>(</mo><mo>.</mo><mo>)</mo></mrow></semantics></math></inline-formula> functions aiming to quantify the reduction between is given.
first_indexed 2024-03-10T09:12:29Z
format Article
id doaj.art-d7244911977547b7ad09911f75c5b8ed
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T09:12:29Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-d7244911977547b7ad09911f75c5b8ed2023-11-22T05:56:53ZengMDPI AGMathematics2227-73902021-07-01915180010.3390/math9151800Revisited Carmichael’s Reduced Totient FunctionSamir Brahim Belhaouari0Yassine Hamdi1Abdelouahed Hamdi2College of Science and Engineering, Hamad Bin Khalifa University Education City, Doha 24404, QatarApplied Mathematics Engineering, Ecole Polytechnique of Paris, 91128 Palaiseau, FranceDepartment of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha 2713, QatarThe modified Totient function of Carmichael <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>(</mo><mo>.</mo><mo>)</mo></mrow></semantics></math></inline-formula> is revisited, where important properties have been highlighted. Particularly, an iterative scheme is given for calculating the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>(</mo><mo>.</mo><mo>)</mo></mrow></semantics></math></inline-formula> function. A comparison between the Euler <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula> and the reduced totient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>(</mo><mo>.</mo><mo>)</mo></mrow></semantics></math></inline-formula> functions aiming to quantify the reduction between is given.https://www.mdpi.com/2227-7390/9/15/1800Euler theoremEuler’s totient functionprime numbers
spellingShingle Samir Brahim Belhaouari
Yassine Hamdi
Abdelouahed Hamdi
Revisited Carmichael’s Reduced Totient Function
Mathematics
Euler theorem
Euler’s totient function
prime numbers
title Revisited Carmichael’s Reduced Totient Function
title_full Revisited Carmichael’s Reduced Totient Function
title_fullStr Revisited Carmichael’s Reduced Totient Function
title_full_unstemmed Revisited Carmichael’s Reduced Totient Function
title_short Revisited Carmichael’s Reduced Totient Function
title_sort revisited carmichael s reduced totient function
topic Euler theorem
Euler’s totient function
prime numbers
url https://www.mdpi.com/2227-7390/9/15/1800
work_keys_str_mv AT samirbrahimbelhaouari revisitedcarmichaelsreducedtotientfunction
AT yassinehamdi revisitedcarmichaelsreducedtotientfunction
AT abdelouahedhamdi revisitedcarmichaelsreducedtotientfunction