Implementing quantum electrodynamics with ultracold atomic systems

We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic ^23 Na and fermionic ^6 Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-ch...

Full description

Bibliographic Details
Main Authors: V Kasper, F Hebenstreit, F Jendrzejewski, M K Oberthaler, J Berges
Format: Article
Language:English
Published: IOP Publishing 2017-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/aa54e0
_version_ 1827873636803936256
author V Kasper
F Hebenstreit
F Jendrzejewski
M K Oberthaler
J Berges
author_facet V Kasper
F Hebenstreit
F Jendrzejewski
M K Oberthaler
J Berges
author_sort V Kasper
collection DOAJ
description We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic ^23 Na and fermionic ^6 Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose–Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.
first_indexed 2024-03-12T16:39:56Z
format Article
id doaj.art-d730756ff36a4c22916d4e3a71912aed
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:39:56Z
publishDate 2017-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-d730756ff36a4c22916d4e3a71912aed2023-08-08T14:34:52ZengIOP PublishingNew Journal of Physics1367-26302017-01-0119202303010.1088/1367-2630/aa54e0Implementing quantum electrodynamics with ultracold atomic systemsV Kasper0F Hebenstreit1https://orcid.org/0000-0003-2262-639XF Jendrzejewski2https://orcid.org/0000-0003-1488-7901M K Oberthaler3J Berges4Institut für Theoretische Physik, Universität Heidelberg , Philosophenweg 16, 69120 Heidelberg, Germany; Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States of AmericaAlbert Einstein Center, Institut für Theoretische Physik, Universität Bern , Sidlerstrasse 5, 3012 Bern, SwitzerlandKirchhoff Institut für Physik, Universität Heidelberg , Im Neuenheimer Feld 227, 69120 Heidelberg, GermanyKirchhoff Institut für Physik, Universität Heidelberg , Im Neuenheimer Feld 227, 69120 Heidelberg, GermanyInstitut für Theoretische Physik, Universität Heidelberg , Philosophenweg 16, 69120 Heidelberg, GermanyWe discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic ^23 Na and fermionic ^6 Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose–Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.https://doi.org/10.1088/1367-2630/aa54e0quantum simulationlattice gauge theorySchwinger pair production
spellingShingle V Kasper
F Hebenstreit
F Jendrzejewski
M K Oberthaler
J Berges
Implementing quantum electrodynamics with ultracold atomic systems
New Journal of Physics
quantum simulation
lattice gauge theory
Schwinger pair production
title Implementing quantum electrodynamics with ultracold atomic systems
title_full Implementing quantum electrodynamics with ultracold atomic systems
title_fullStr Implementing quantum electrodynamics with ultracold atomic systems
title_full_unstemmed Implementing quantum electrodynamics with ultracold atomic systems
title_short Implementing quantum electrodynamics with ultracold atomic systems
title_sort implementing quantum electrodynamics with ultracold atomic systems
topic quantum simulation
lattice gauge theory
Schwinger pair production
url https://doi.org/10.1088/1367-2630/aa54e0
work_keys_str_mv AT vkasper implementingquantumelectrodynamicswithultracoldatomicsystems
AT fhebenstreit implementingquantumelectrodynamicswithultracoldatomicsystems
AT fjendrzejewski implementingquantumelectrodynamicswithultracoldatomicsystems
AT mkoberthaler implementingquantumelectrodynamicswithultracoldatomicsystems
AT jberges implementingquantumelectrodynamicswithultracoldatomicsystems