Implementing quantum electrodynamics with ultracold atomic systems
We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic ^23 Na and fermionic ^6 Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-ch...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2017-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/aa54e0 |
_version_ | 1827873636803936256 |
---|---|
author | V Kasper F Hebenstreit F Jendrzejewski M K Oberthaler J Berges |
author_facet | V Kasper F Hebenstreit F Jendrzejewski M K Oberthaler J Berges |
author_sort | V Kasper |
collection | DOAJ |
description | We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic ^23 Na and fermionic ^6 Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose–Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable. |
first_indexed | 2024-03-12T16:39:56Z |
format | Article |
id | doaj.art-d730756ff36a4c22916d4e3a71912aed |
institution | Directory Open Access Journal |
issn | 1367-2630 |
language | English |
last_indexed | 2024-03-12T16:39:56Z |
publishDate | 2017-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | New Journal of Physics |
spelling | doaj.art-d730756ff36a4c22916d4e3a71912aed2023-08-08T14:34:52ZengIOP PublishingNew Journal of Physics1367-26302017-01-0119202303010.1088/1367-2630/aa54e0Implementing quantum electrodynamics with ultracold atomic systemsV Kasper0F Hebenstreit1https://orcid.org/0000-0003-2262-639XF Jendrzejewski2https://orcid.org/0000-0003-1488-7901M K Oberthaler3J Berges4Institut für Theoretische Physik, Universität Heidelberg , Philosophenweg 16, 69120 Heidelberg, Germany; Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States of AmericaAlbert Einstein Center, Institut für Theoretische Physik, Universität Bern , Sidlerstrasse 5, 3012 Bern, SwitzerlandKirchhoff Institut für Physik, Universität Heidelberg , Im Neuenheimer Feld 227, 69120 Heidelberg, GermanyKirchhoff Institut für Physik, Universität Heidelberg , Im Neuenheimer Feld 227, 69120 Heidelberg, GermanyInstitut für Theoretische Physik, Universität Heidelberg , Philosophenweg 16, 69120 Heidelberg, GermanyWe discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic ^23 Na and fermionic ^6 Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose–Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.https://doi.org/10.1088/1367-2630/aa54e0quantum simulationlattice gauge theorySchwinger pair production |
spellingShingle | V Kasper F Hebenstreit F Jendrzejewski M K Oberthaler J Berges Implementing quantum electrodynamics with ultracold atomic systems New Journal of Physics quantum simulation lattice gauge theory Schwinger pair production |
title | Implementing quantum electrodynamics with ultracold atomic systems |
title_full | Implementing quantum electrodynamics with ultracold atomic systems |
title_fullStr | Implementing quantum electrodynamics with ultracold atomic systems |
title_full_unstemmed | Implementing quantum electrodynamics with ultracold atomic systems |
title_short | Implementing quantum electrodynamics with ultracold atomic systems |
title_sort | implementing quantum electrodynamics with ultracold atomic systems |
topic | quantum simulation lattice gauge theory Schwinger pair production |
url | https://doi.org/10.1088/1367-2630/aa54e0 |
work_keys_str_mv | AT vkasper implementingquantumelectrodynamicswithultracoldatomicsystems AT fhebenstreit implementingquantumelectrodynamicswithultracoldatomicsystems AT fjendrzejewski implementingquantumelectrodynamicswithultracoldatomicsystems AT mkoberthaler implementingquantumelectrodynamicswithultracoldatomicsystems AT jberges implementingquantumelectrodynamicswithultracoldatomicsystems |